## Modern neural network architectures for image analysis Deep learning course for industry

#### Mitko Veta

Eindhoven University of Technology Department of Biomedical Engineering

2020

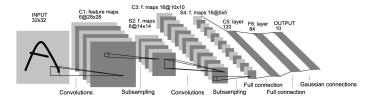
▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

 Have an overview of relatively recent neural network architectures

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- Image classification
- Object detection and segmentation
- Generative models

## LeNET



Y. LeCun et al. (1998). "Gradient-based learning applied to document recognition". In: *Proceedings of the IEEE* 86.11, pp. 2278–2324

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

## What changed since the 1998?





## What changed since the 1998?





Explosion of datasets (public and proprietary)

・ロ・・ 日本・ ・ 日本・ ・

## What changed since the 1998?





Explosion of datasets (public and proprietary)

(日) (四) (日) (日) (日)



#### ImageNet challenge



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Figure source: image-net.org

## Medical image analysis challenges



(日)

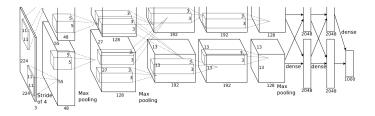
э

Figure source: grand-challenge.org

#### Architectures for image classification

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

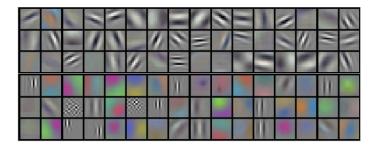
#### AlexNet



A. Krizhevsky et al. (2012). "Imagenet classification with deep convolutional neural networks". In: Advances in neural information processing systems, pp. 1097–1105

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

#### AlexNet



A. Krizhevsky et al. (2012). "Imagenet classification with deep convolutional neural networks". In: Advances in neural information processing systems, pp. 1097–1105

<□▶ <□▶ < □▶ < □▶ < □▶ < □▶ = のへぐ

#### AlexNet

| mite        | container ship     | motor scooter          | leopard         |
|-------------|--------------------|------------------------|-----------------|
| mite        | container ship     | motor scooter          | leopard         |
| black widow | lifeboat           | go-kart                | jaguar          |
| cockroach   | amphibian          | moped                  | cheetah         |
| tick        | fireboat           | bumper car             | snow leopard    |
| starfish    | drilling platform  | golfcart               | Egyptian cat    |
|             |                    |                        |                 |
| grille      | mushroom           | cherry                 | Madagascar cat  |
| convertible | agaric             | dalmatian              | squirrel monkey |
| grille      | mushroom           | grape                  | spider monkey   |
| pickup      | jelly fungus       | elderberry             | titi            |
| beach wagon |                    | ffordshire bullterrier | indri           |
| fire engine | dead-man's-fingers | currant                | howler monkey   |

A. Krizhevsky et al. (2012). "Imagenet classification with deep convolutional neural networks". In: Advances in neural information processing systems, pp. 1097–1105

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

#### VGG-net

"The image is passed through a stack of convolutional (conv.) layers, where we use filters with a very small receptive field:  $3 \times 3$  (which is the smallest size to capture the notion of left/right, up/down, center)."

|           |           | ConvNet C | onfiguration |           |           |
|-----------|-----------|-----------|--------------|-----------|-----------|
| А         | A-LRN     | В         | С            | D         | E         |
| 11 weight | 11 weight | 13 weight | 16 weight    | 16 weight | 19 weight |
| layers    | layers    | layers    | layers       | layers    | layers    |
|           |           |           | 24 RGB image |           |           |
| conv3-64  | conv3-64  | conv3-64  | conv3-64     | conv3-64  | conv3-64  |
|           | LRN       | conv3-64  | conv3-64     | conv3-64  | conv3-64  |
|           |           |           | pool         |           |           |
| conv3-128 | conv3-128 | conv3-128 | conv3-128    | conv3-128 | conv3-128 |
|           |           | conv3-128 | conv3-128    | conv3-128 | conv3-128 |
|           |           |           | pool         |           |           |
| conv3-256 | conv3-256 | conv3-256 | conv3-256    | conv3-256 | conv3-256 |
| conv3-256 | conv3-256 | conv3-256 | conv3-256    | conv3-256 | conv3-256 |
|           |           |           | conv1-256    | conv3-256 | conv3-256 |
|           |           |           |              |           | conv3-250 |
|           |           |           | pool         |           |           |
| conv3-512 | conv3-512 | conv3-512 | conv3-512    | conv3-512 | conv3-512 |
| conv3-512 | conv3-512 | conv3-512 | conv3-512    | conv3-512 | conv3-512 |
|           |           |           | conv1-512    | conv3-512 | conv3-512 |
|           |           |           |              |           | conv3-512 |
|           |           |           | pool         |           |           |
| conv3-512 | conv3-512 | conv3-512 | conv3-512    | conv3-512 | conv3-512 |
| conv3-512 | conv3-512 | conv3-512 | conv3-512    | conv3-512 | conv3-512 |
|           |           |           | conv1-512    | conv3-512 | conv3-512 |
|           |           |           |              |           | conv3-512 |
|           |           |           | pool         |           |           |
|           |           |           | 4096         |           |           |
|           |           |           | 4096         |           |           |
|           |           |           | 1000         |           |           |
|           |           | soft      | -max         |           |           |

K. Simonyan et al. (2014). "Very deep convolutional networks for large-scale image recognition". In: arXiv preprint arXiv:1409.1556

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

#### Inception-v1

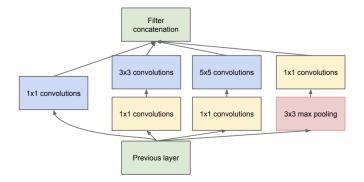


C. Szegedy, W. Liu, et al. (2015). "Going deeper with convolutions". In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-9

・ロト ・ 同ト ・ ヨト ・ ヨト

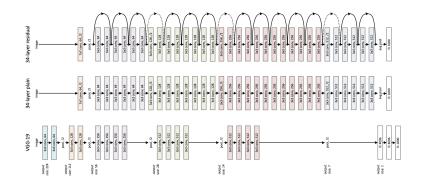
ж

## Inception module



C. Szegedy, W. Liu, et al. (2015). "Going deeper with convolutions". In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1-9

ResNet

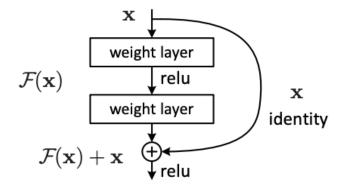


K. He, X. Zhang, et al. (2016). "Deep residual learning for image recognition". In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778

・ロト ・ 同ト ・ ヨト ・ ヨト

э

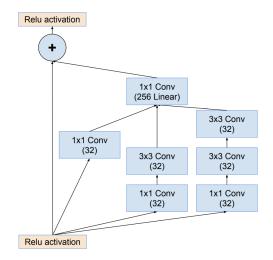
#### Residual block



K. He, X. Zhang, et al. (2016). "Deep residual learning for image recognition". In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

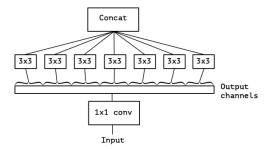
## Inception-ResNet



C. Szegedy, S. loffe, et al. (2017). "Inception-v4, inception-resnet and the impact of residual connections on learning". In: *Thirty-first AAAI conference on artificial intelligence* 

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々で

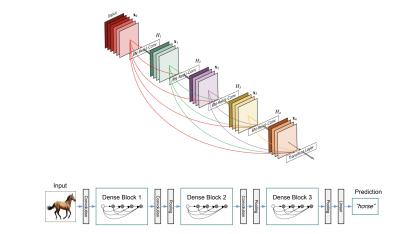
## **Xception**



F. Chollet (2017). "Xception: Deep learning with depthwise separable convolutions". In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1251–1258

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

#### Densenet



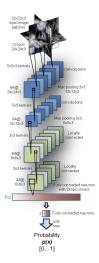
G. Huang et al. (2017). "Densely connected convolutional networks". In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4700–4708

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

#### 3D convolutional neural networks

All architectural components and features of 2D networks can be also used with 3D networks (e.g. residual connections).

2D architectures can be used for 3D data, either in a slice-by-slice manner or with pseudo-3D inputs.

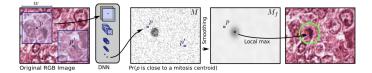


H. R. Roth et al. (2015). "Improving computer-aided detection using convolutional neural networks and random view aggregation". In: *IEEE transactions on medical imaging* 35.5, pp. 1170–1181

# Architectures for object detection and image segmentation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

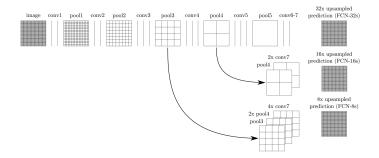
#### Sliding window object detection



D. C. Cireşan et al. (2013). "Mitosis detection in breast cancer histology images with deep neural networks". In: International conference on medical image computing and computer-assisted intervention. Springer, pp. 411–418

▲□▶▲□▶▲□▶▲□▶ □ のQの

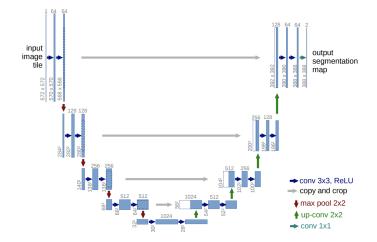
#### Fully convolutional neural network architectures



J. Long et al. (2015). "Fully convolutional networks for semantic segmentation". In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

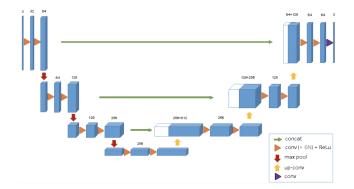
#### U-Net



O. Ronneberger et al. (2015). "U-net: Convolutional networks for biomedical image segmentation". In: International Conference on Medical image computing and computer-assisted intervention. Springer, pp. 234–241

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

## 3D U-Net



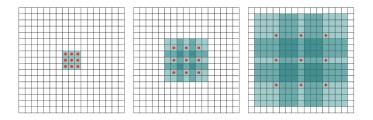
Ö. Çiçek et al. (2016). "3D U-Net: learning dense volumetric segmentation from sparse annotation". In: International conference on medical image computing and computer-assisted intervention. Springer, pp. 424–432

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

#### **Dilated convolutions**

Figure source: github.com/vdumoulin

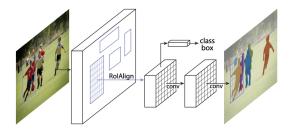
#### Dilated convolutions



F. Yu et al. (2015). "Multi-scale context aggregation by dilated convolutions". In: arXiv preprint arXiv:1511.07122

## Region proposal CNNs

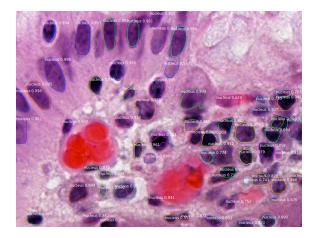
Main idea: one end-to-end model that both detects regions and classifies/segments objects in them.



K. He, G. Gkioxari, et al. (2017). "Mask r-cnn". In: Proceedings of the IEEE international conference on computer vision, pp. 2961–2969

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

## Region proposal CNNs



◆□→ ◆圖→ ◆国→ ◆国→ 三国

Figure from: github.com/matterport/Mask\_RCNN

## Generative models

(ロ)、(型)、(E)、(E)、 E) の(()

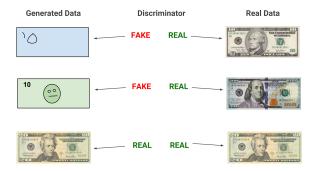
Two competing models:

- Generator: learns to generate new data.
- Discriminator: learns to distinguish real from fake (generated) data.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

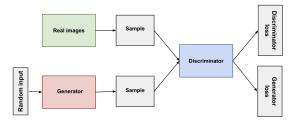
Two competing models:

- Generator: learns to generate new data.
- Discriminator: learns to distinguish real from fake (generated) data.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

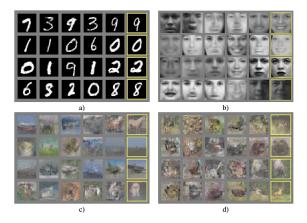
Figure from: developers.google.com/machine-learning/gan



The input is a random number but it can also be a condition (e.g. a class, object mask etc.).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Figure from: developers.google.com/machine-learning/gan



I. Goodfellow et al. (2014). "Generative adversarial nets". In: Advances in neural information processing systems, pp. 2672–2680

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆

## BigGANs



A. Brock et al. (2018). "Large scale gan training for high fidelity natural image synthesis". In: arXiv preprint arXiv:1809.11096

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

## Fake faces



thispersondoesnotexist.com

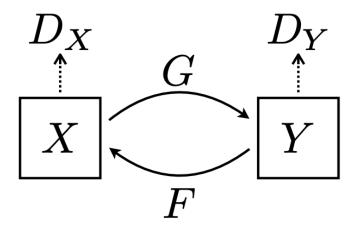
## Cycle-GANs



J.-Y. Zhu et al. (2017). "Unpaired image-to-image translation using cycle-consistent adversarial networks". In: Proceedings of the IEEE international conference on computer vision, pp. 2223–2232

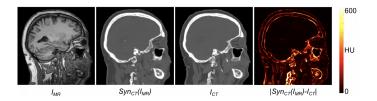
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

## Cycle-GANs



J.-Y. Zhu et al. (2017). "Unpaired image-to-image translation using cycle-consistent adversarial networks". In: Proceedings of the IEEE international conference on computer vision, pp. 2223–2232

## MR to CT synthesis



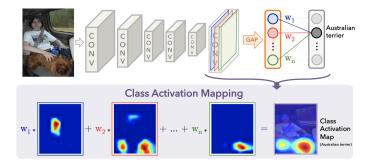
J. M. Wolterink et al. (2017). "Deep MR to CT synthesis using unpaired data". In: International workshop on simulation and synthesis in medical imaging. Springer, pp. 14–23

## Other application

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

#### Interpretable models

What does the model learn (in human-explainable terms)? Which regions from the image are important for the model output?

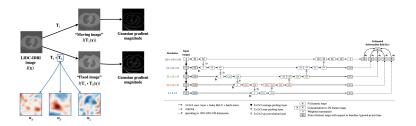


B. Zhou et al. (2016). "Learning deep features for discriminative localization". In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2921–2929

イロト 不得 トイヨト イヨト

3

Predict image transformation that registers the moving to the fixed image.

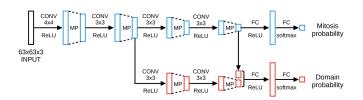


K. A. Eppenhof et al. (2019). "Progressively trained convolutional neural networks for deformable image registration". In: *IEEE transactions on medical imaging* 

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

## Adversarial training

Learn features independent of a confounding factor (such as the domain of origin).



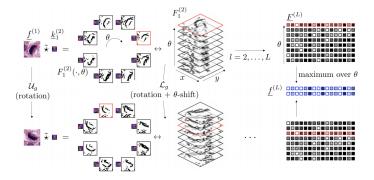
M. W. Lafarge et al. (2017). "Domain-adversarial neural networks to address the appearance variability of histopathology images". In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer, pp. 83–91

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

э

## Group convolutions

Roto-translational equivariance.



M. W. Lafarge et al. (2017). "Domain-adversarial neural networks to address the appearance variability of histopathology images". In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Springer, pp. 83–91

▲□▶▲□▶▲□▶▲□▶ □ のQの

Robust models (e.g. to noise and adversarial attacks)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Deep learning for image acquisition
- Interpretable models
- Prospective clinical validation
- Workflow integration