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Learning goals

» Have an overview of relatively recent neural network
architectures
» Image classification
» Object detection and segmentation
» Generative models
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ImageNet challenge
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Medical image analysis challenges

Figure source: grand-challenge.org



Architectures for image classification



AlexNet
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A. Krizhevsky et al. (2012). “Imagenet classification with deep convolutional neural networks”. In: Advances in
neural information processing systems, pp. 1097-1105
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VGG-net

"The image is passed through a stack of convolutional (conv.) layers, where we use filters with a very small

receptive field: 3 X 3 (which is the smallest size to capture the notion of left/right, up/down, center)

K. Simonyan et al. (2014). “Very deep convolutional networks for large-scale image recognition”.
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Inception-vl
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computer vision and pattern recognition, pp. 1-9

C. Szegedy, W. Liu, et al. (2015). “Going deeper with convolutions”. In: Proceedings of the IEEE conference on



Inception module
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C. Szegedy, W. Liu, et al. (2015). “Going deeper with convolutions”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 1-9



ResNet
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K. He, X. Zhang, et al. (2016). “Deep residual learning for image recognition”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 770-778
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Residual block
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K. He, X. Zhang, et al. (2016). “Deep residual learning for image recognition”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 770-778



Inception-ResNet
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C. Szegedy, S. loffe, et al. (2017). “Inception-v4, inception-resnet and the impact of residual connections on
learning”. In: Thirty-first AAAI conference on artificial intelligence



Xception
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F. Chollet (2017). “Xception: Deep learning with depthwise separable convolutions”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1251-1258



Densenet
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G. Huang et al. (2017). “Densely connected convolutional networks”.
computer vision and pattern recognition, pp. 4700-4708
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3D convolutional neural networks

32323
Inputimags.
patches.

All architectural components
and features of 2D networks
can be also used with 3D
networks (e.g. residual con-
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H. R. Roth et al. (2015). “Improving computer-aided detection using convolutional neural networks and random
view aggregation”. In: |EEE transactions on medical imaging 35.5, pp. 1170-1181



Architectures for object detection and image
segmentation



Sliding window object detection
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D. C. Ciresan et al. (2013). “Mitosis detection in breast cancer histology images with deep neural networks”. In:
International conference on medical image computing and computer-assisted intervention. Springer, pp. 411-418




Fully convolutional neural network architectures
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J. Long et al. (2015). “Fully convolutional networks for semantic segmentation”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 3431-3440



U-Net
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O. Ronneberger et al. (2015). “U-net: Convolutional networks for biomedical image segmentation”. In:
International Conference on Medical image computing and computer-assisted intervention. Springer, pp. 234—-241

=] F




3D U-Net
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0. Cicek et al. (2016). “3D U-Net: learning dense volumetric segmentation from sparse annotation”. In

International conference on medical image computing and computer-assisted intervention. Springer, pp. 424—432



Dilated convolutions
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Figure source: github.com/vdumoulin



Dilated convolutions

F. Yu et al. (2015). “Multi-scale context aggregation by dilated convolutions”. In: arXiv preprint arXiv:1511.07122
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Region proposal CNNs

Main idea: one end-to-end model that both detects regions and
classifies/segments objects in them.

K. He, G. Gkioxari, et al. (2017). “Mask r-cnn”. In: Proceedings of the IEEE international conference on computer
vision, pp. 2961-2969



Region proposal CNNs
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Generative models



Generative adversarial networks

Two competing models:
> Generator: learns to generate new data.

» Discriminator: learns to distinguish real from fake
(generated) data.



Generative adversarial networks

Two competing models:
> Generator: learns to generate new data.

» Discriminator: learns to distinguish real from fake
(generated) data.

Figure from: developers.google.com/machine-learning/gan



Generative adversarial networks
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The input is a random number but it can also be a condition (e.g.
a class, object mask etc.).

Figure from: developers.google.com/machine-learning/gan



Generative adversarial networks

|. Goodfellow et al. (2014). “Generative adversarial nets”. In: Advances in neural information processing systems,
pp. 2672-2680



BigGANs

A. Brock et al. (2018). “Large scale gan training for high fidelity natural image synthesis”. In: arXiv preprint
arXiv:1809.11096



Fake faces



https://thispersondoesnotexist.com/

Cycle-GANs
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J.-Y. Zhu et al. (2017). “Unpaired image-to-image translation using cycle-consistent adversarial networks”. In
Proceedings of the IEEE international conference on computer vision, pp. 2223-2232




Cycle-GANs
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J.-Y. Zhu et al. (2017). “Unpaired image-to-image translation using cycle-consistent adversarial networks”. In
Proceedings of the IEEE international conference on computer vision, pp. 2223-2232



MR to CT synthesis
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J. M. Wolterink et al. (2017). “Deep MR to CT synthesis using unpaired data”. In: International workshop on
simulation and synthesis in medical imaging. Springer, pp. 14-23



Other application



Interpretable models

What does the model learn (in human-explainable terms)? Which
regions from the image are important for the model output?
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B. Zhou et al. (2016). “Learning deep features for discriminative localization”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 2921-2929



Image registration

Predict image transformation that registers the moving to the fixed

image.
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K. A. Eppenhof et al. (2019). “Progressively trained convolutional neural networks for deformable image

registration”. In: /|EEE transactions on medical imaging



Adversarial training

Learn features independent of a confounding factor (such as the
domain of origin).
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M. W. Lafarge et al. (2017). “Domain-adversarial neural networks to address the appearance variability of

histopathology images". In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical
Decision Support. Springer, pp. 83-91



Group convolutions

Roto-translational equivariance.
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M. W. Lafarge et al. (2017). “Domain-adversarial neural networks to address the appearance variability of
histopathology images”. In: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical
Decision Support. Springer, pp. 83-91



Outlook for DL and MIA

Robust models (e.g. to noise and adversarial attacks)

Deep learning for image acquisition

>

>

> Interpretable models

» Prospective clinical validation
>

Workflow integration
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