
Machine learning fundamentals
Deep learning course for industry

Mitko Veta

Eindhoven University of Technology
Department of Biomedical Engineering

2020

Historical perspective

Figure source: nvidia.com

Course overview

Day 1:

I Theory
I Machine learning fundamentals
I From linear models to deep neural networks
I Convolutional neural networks

I Practice
I Linear and logistic regression in Keras
I Fully connected neural networks in Keras
I Convolutional neural networks in Keras

Course overview

Day 2:

I Theory
I Experimental methodology for training of ML/DL models
I Overview of modern neural network architectures

I Practice
I Image segmentation with U-Net
I Mini-competition: Segmentation of cardiac MR images

Learning goals

I Define machine learning.

I Introduce the conceptually simple yet practically useful linear
model.

I Discuss the central challenge of machine learning:
generalisation.

An example from my past work: nuclei area measurement

2010-2011: An image processing pipeline of (mainly)
mathematical morphology operators (e.g. the watershed
algorithm).

The design and validation of the processing pipeline took the
better part of a year.

Figure source: Veta et al. PLOS ONE 2012

An example from my past work: nuclei area measurement

2015: A deep neural network for nuclei area measurement.

The the training and validation of the deep neural network model
took less than a week.

The results were more accurate than the the original method.

Figure source: Veta et al. MICCAI 2016

An example from my past work: nuclei area measurement

In the first case, I translated the domain knowledge of (medical)
experts about nuclei appearance into a series of manually written
rules that perform nuclei segmentation.

In the second case, I took a dataset of nuclei segmentations and
fed it to a (deep) machine learning algorithm that learned how to
directly measure nuclei size from the provided examples.

The central premise of machine learning

Learn “computer programs” from examples instead of manually
writing rules.

Advantage: the same method (e.g. a neural network) can be used
to solve a variety of different problems.

Siberian hustky vs. eskimo dog Normal vs. metastases

Figures source: (left) Szegedy et al. arXiv 2014, (right) camelyon16.grand-challenge.org

The central premise of machine learning

Learn “computer programs” from examples instead of manually
writing rules.

Advantage: the same method (e.g. a neural network) can be used
to solve a variety of different problems.

Siberian hustky vs. eskimo dog Normal vs. metastases

Figures source: (left) Szegedy et al. arXiv 2014, (right) camelyon16.grand-challenge.org

The central premise of machine learning

Figure source: xkcd.com

What are the ”examples”?

Depends on the particular problem and task.

Dataset: cardiac MRI images.
Task: detect if a specific pathology is present in each image.

In this case, every image is an example and is associated with a binary
target: 0 = “healthy”, 1 = “diseased” (i.e. we want to classify each
image as “healthy” or “diseases”).

healthydiseaseddiseased

What are the ”examples”?

Dataset: cardiac MRI images.
Task: Segment the contours of the left ventricle

In this case, each pixel is an example and is associated with a binary
target: 0 = “background”, 1 = “contour”.

How are the “examples” represented?

Traditionally with feature extraction:

Machine learning
model

x = [xintensity xtexture xshape...]

Intensity features
Texture features
Shape features

...

How are the “examples” represented?

With raw pixel values (the de facto standard for deep learning):

Machine learning
model

x = [...]

In summary...

In order to design a machine learning algorithm for a specific task
we are given a dataset of examples represented by xi .

Each example is (optionally) associated with a target yi .

The target can be categorical, such as class membership (e.g.
yi = {0, 1}), or continuous (e.g. area, volume etc.).

Types of machine learning

I Unsupervised machine learning: given a dataset xi , find “some
interesting properties”.
I Clustering: find groupings of xi
I Density estimation: find p(xi)
I Generative models.
I ...

I Supervised machine learning: given a training dataset {xi , yi},
predict ŷi of previously unseen samples.
I Regression: the target variables yi are continuous.
I Classification: the target variables yi are continuous.
I ...

A simple machine learning model for regression

The predictions ŷi are a linear combination of the inputs:

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y
Linear regression

Data
Linear regression

ŷ = ŵ0 +
∑p

j=1 xj ŵj

Linear models are surprisingly useful and common

Fetal weight estimate from ultrasound imaging:

fetal weight = ŵ0 + ŵ1×femur len. + ŵ2×abdominal circ. +
ŵ3×head circ.

Figure source: my daughter

Linear model

I Input vector xT = (x1, x2, . . . , xp).

I Output y predicted using the model

ŷ = ŵ0 +
∑p

j=1 xj ŵj

I ŵi (0 ≤ i ≤ p) are the parameters of the linear model.

Linear model

I In vector form

ŷ = ŵTx = xT ŵ

using the fact that the scalar (inner) product of two vectors is
a commutative operation.

I We assume that w0 is in w and 1 is included in x .

I ŷ is a scalar, but in general can be a k-vector ŷ , in which case
w becomes a p × k matrix of coefficients.

Linear model fit by least squares

I We need to find coefficients ŵi which minimise the error
estimated with the residual sum of squares

RSS(w) =
N∑
i=1

(yi − xT
i w)2

assuming N input-output pairs (the dataset).

I RSS(w) is a quadratic function.

I A minimum always existsthough not necessarily a unique one.

Linear model fit by least squares

I y = [y1, y2, . . . , yN]T is the vector formed from the N output
vectors and X is an N × p matrix

RSS(w) = (y − Xw)T (y − Xw)

I To find the minimum we differentiate with respect to w which
gives:

(−X)T (y − Xw) + (y − Xw)T (−X)

using the rule (AB)T = BTAT this is equivalent to

−2XT (y − Xw)

Linear model fit by least squares

I y = [y1, y2, . . . , yN]T is the vector formed from the N output
vectors and X is an N × p matrix

RSS(w) = (y − Xw)T (y − Xw)

I To find the minimum we differentiate with respect to w which
gives:

(−X)T (y − Xw) + (y − Xw)T (−X)

using the rule (AB)T = BTAT this is equivalent to

−2XT (y − Xw)

Linear model fit by least squares

I To find the minimum our derivative must be 0, hence:

XT (y − Xw) = 0

XTy − XTXw = 0

XTy = XTXw

I If XTX is non-singular there exists a unique solution given by

ŵ = (XTX)−1XTy

Question: Why not simply y − Xw = 0 → y = Xw →
ŵ = X−1y?

Linear model fit by least squares

I For each input xi there corresponds the fitted output

ŷi = ŷi (xi) = ŵTxi

.

I This is called “making a prediction” for xi .
I The entire fitted surface (hyperplane) is fully characterised by

the parameter vector ŵ .

I After fitting the model, we can “discard” the training dataset.

The ML workflow (thus far)

I Collect dataset {xi , yi}.
I Assume a model for ŷ .

I Decide on an error/loss function that measures the
“goodness of fit” of ŷ to {xi , yi}.

I Fit the model to the data with an optimisation procedure (e.g.
gradient-based optimisation).

But what if a linear model is not enough?

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5
y

Linear regression

Data
Linear regression

ŷ = ŵ0 +
∑p

i=1 xi ŵi

ŷ = xT ŵ

Polynomial regression

I The linear regression algorithm can be generalised to include
all polynomial functions instead of just the linear ones.

I The linear regression model is then just a special case
restricted to a polynomial of degree one: ŷ = b + wx .

I Moving to degree two to we obtain: ŷ = b + w1x + w2x
2.

I This can be seen as adding a new feature x2.
I In fact, we can generalise this approach to create all sorts of

hypothesis spaces, e.g.: ŷ = b + w1x + w2 sin (x) + w3
√
x .

I The output is still a linear function of the parameters, so it
can be fitted with least squares.

Polynomial regression

I The linear regression algorithm can be generalised to include
all polynomial functions instead of just the linear ones.

I The linear regression model is then just a special case
restricted to a polynomial of degree one: ŷ = b + wx .

I Moving to degree two to we obtain: ŷ = b + w1x + w2x
2.

I This can be seen as adding a new feature x2.
I In fact, we can generalise this approach to create all sorts of

hypothesis spaces, e.g.: ŷ = b + w1x + w2 sin (x) + w3
√
x .

I The output is still a linear function of the parameters, so it
can be fitted with least squares.

Polynomial regression

A comparison of a linear, degree-4, and degree-12 polynomials as
predictors

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Linear regression

Data
Linear regression
Error

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Polynomial regression

Data
Poly. reg. deg = 4
Error

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
20

15

10

5

0

5
Polynomial regression

Data
Poly. reg. deg = 12
Error

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Linear regression

Data
Linear regression
Test set

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Polynomial regression

Data
Poly. reg. deg = 4
Test set

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
20

15

10

5

0

5
Polynomial regression

Data
Poly. reg. deg = 12
Test set

Polynomial regression

A comparison of a linear, degree-4, and degree-12 polynomials as
predictors

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Linear regression

Data
Linear regression
Error

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Polynomial regression

Data
Poly. reg. deg = 4
Error

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
20

15

10

5

0

5
Polynomial regression

Data
Poly. reg. deg = 12
Error

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Linear regression

Data
Linear regression
Test set

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Polynomial regression

Data
Poly. reg. deg = 4
Test set

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
20

15

10

5

0

5
Polynomial regression

Data
Poly. reg. deg = 12
Test set

Generalisation

I The central challenge in machine learning is to design an
algorithm that will perform well on new data (different from
the training set data).

I This ability is called generalisation.

I Training error is the error computed on the training set.

Generalisation

I During the training (learning) we aim at reducing the training
error.

I If that is the end goal, we only have an optimisation problem,
not a machine learning one.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Linear regression

Data
Linear regression
Error

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Linear regression

Data
Linear regression
Test set

Generalisation error

I Generalisation error, also called test error is defined as the
expected error on new, previously unseen data.

I Unlike in simple optimisation, in machine learning our main
goal is to minimise the generalisation error.

I Usually the generalisation error is estimated by measuring the
performance on a test data set which must be independent
from the training set.

Example: Linear regression

I Previously, we trained the model by minimising the training
error

1

m(train)

∥∥∥X (train)ŵ − y(train)
∥∥∥2
2

I We would like actually to minimise the test error

1

m(test)

∥∥∥X (test)ŵ − y(test)
∥∥∥2
2

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Linear regression

Data
Linear regression
Error

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Linear regression

Data
Linear regression
Test set

Statistical learning theory

I Statistical learning theory provides methods to
mathematically reason about the performance on the test set
although we can observe only the training set.

I This is possible under some assumptions about the data sets
I The training and test data are generated by drawing from a

probability distribution over data sets. We refer to that as
data-generating process.

I i.i.d. assumptions
I Examples in each data sets are independent from each other.
I The training data set and the test data set are identically

distributed, i.e., drawn from the same probability distribution.

Underfitting and overfitting

I The factor that determines how well a machine algorithm will
perform is its ability to

1. Make the training error small.
2. Make the difference between the training and test error small.

I These two factors correspond to the two central challenges in
machine learning: underfitting and overfitting.

I Underfitting occurs when the model is not able to produce a
sufficiently small training error.

I Overfitting occurs when the gap between the training and test
errors is too large.

Model capacity

I A capacity of the model is its ability to fit a wide variety of
functions.

I Low capacity models struggle to fit the training set
(underfitting).

I Models with high capacity have danger to overfit the training
data (e.g., by “memorising” training samples).

I The capacity can be controlled by choosing its hypothesis
space, i.e. the set of functions from which the learning
algorithm is allowed to select the solution.

I Example: The linear regression algorithm has the set of all
linear functions as its hypothesis space.

Model capacity

I A capacity of the model is its ability to fit a wide variety of
functions.

I Low capacity models struggle to fit the training set
(underfitting).

I Models with high capacity have danger to overfit the training
data (e.g., by “memorising” training samples).

I The capacity can be controlled by choosing its hypothesis
space, i.e. the set of functions from which the learning
algorithm is allowed to select the solution.

I Example: The linear regression algorithm has the set of all
linear functions as its hypothesis space.

Underfitting and overfitting in polynomial estimation

I Models with low capacity are not up to the task.

I Models with high-capacity can solve a complex task, but when
the capacity is too high for the concrete (training) task there
is the danger of overfitting.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Linear regression

Data
Linear regression
Test set

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Polynomial regression

Data
Poly. reg. deg = 4
Test set

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
20

15

10

5

0

5
Polynomial regression

Data
Poly. reg. deg = 12
Test set

Generalisation and capacity

I Simpler functions generalise more easily, but we still need to
choose a sufficiently complex hypothesis (function) to obtain
small training error.

I Typically training error decreases with the increase of the
model capacity until an (asymptotic) value is reached.

I The generalisation error is U-shaped with the capacity range
split in an underfitting and an overfitting zone.

Generalisation and capacity

Er
ro

r

0 Capacity

Generalization gap

Under�tting Over�tting
Generalization error
Training error

Training set size

I Training and generalisation error vary as the size of the
training data set varies.

I Expected generalisation error never increases as the size of the
training set increases.

I Any fixed parametric model will asymptotically approach an
error value that exceeds the so called Bayes error.

I It is possible for the model to have optimal capacity and still
have a large gap between training and generalisation errors.

I In that case the gap usually can be reduced with increasing
the number of training examples.

Training set size

Figure source: deeplearningbook.org

Regularisation

I In addition to increasing and decreasing of the hypothesis
space, i.e., the capacity, we can influence the learning
algorithm by giving preference to one solution over
another in the hypothesis space.

I In case both functions are eligible we can define a condition to
express preference about one of the functions.

I The less preferred solution is chosen only if it gives
significantly better performance with the training data.

I E.g., prefer smaller weights w:

L(w) = RSS(w) + λwᵀw

Regularisation

I In addition to increasing and decreasing of the hypothesis
space, i.e., the capacity, we can influence the learning
algorithm by giving preference to one solution over
another in the hypothesis space.

I In case both functions are eligible we can define a condition to
express preference about one of the functions.

I The less preferred solution is chosen only if it gives
significantly better performance with the training data.

I E.g., prefer smaller weights w:

L(w) = RSS(w) + λwᵀw

Summary

I Machine learning studies algorithms that learn from examples
instead of relying on manually written rules.

I The linear model is conceptually simple but practically useful
and can be seen as the basic building block of neural networks.

I The central challenge in machine learning is to find a model
that will perform well on new data. This ability is called
generalisation.

