Machine learning fundamentals Deep learning course for industry

Mitko Veta

Eindhoven University of Technology Department of Biomedical Engineering

2020

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Historical perspective

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence - first machine learning, then deep learning, a subset of machine learning - have created ever larger disruptions.

KORK ERKER ADAM ADA

- \triangleright 09.30 10.15 Machine learning fundamentals
- \triangleright 10.30 11.15 From linear models to deep neural networks
- \blacktriangleright 11.30 12.00 Convolutional neural networks
- \blacktriangleright Lunch break
- \triangleright 13.00 14.00 Training neural networks in your web browser

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

- \blacktriangleright Define machine learning.
- Introduce the conceptually simple yet practically useful linear model.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \triangleright Discuss the central challenge of machine learning: generalisation.

An example from my past work: nuclei area measurement

2010-2011: An image processing pipeline of (mainly) mathematical morphology operators (e.g. the watershed algorithm).

The design and validation of the processing pipeline took the better part of a year.

KORK EXTERNE PROVIDE

Figure source: Veta et al. PLOS ONE 2012

An example from my past work: nuclei area measurement

2015: A deep neural network for nuclei area measurement.

KORK EXTERNE PROVIDE

The the training and validation of the deep neural network model took less than a week.

The results were more accurate than the the original method.

Figure source: Veta et al. MICCAI 2016

The central premise of machine learning

Learn "computer programs" from examples instead of manually writing rules.

The central premise of machine learning

Learn "computer programs" from examples instead of manually writing rules.

Advantage: the same method (e.g. a neural network) can be used to solve a variety of different problems.

Siberian hustky vs. eskimo dog Normal vs. metastases

KORKARYKERKER POLO

Figures source: (left) Szegedy et al. arXiv 2014, (right) camelyon16.grand-challenge.org

What are the "examples"?

Depends on the particular problem and task.

Dataset: cardiac MRI images.

Task: detect if a specific pathology is present in each image.

In this case, every image is an example and is associated with a binary target: $0 =$ "healthy", $1 =$ "diseased" (i.e. we want to classify each image as "healthy" or "diseases").

KORK ERKER ADAM ADA

What are the "examples"?

Dataset: cardiac MRI images. Task: Segment the contours of the left ventricle

In this case, each pixel is an example and is associated with a binary target: $0 =$ "background", $1 =$ "contour".

KORK ERKER ADAM ADA

How are the "examples" represented?

Traditionally with feature extraction:

KORKARYKERKER POLO

With raw pixel values (the *de facto* standard for deep learning):

KORK EXTERNE PROVIDE

In order to design a machine learning algorithm for a specific task we are given a dataset of examples represented by $\mathsf{x}_i.$

Each example is (optionally) associated with a target y_i .

The target can be categorical, such as class membership (e.g. $y_i = \{0, 1\}$, or continuous (e.g. area, volume etc.).

KORKAR KERKER SAGA

Types of machine learning

Insupervised machine learning: given a dataset x_i , find "some interesting properties".

- \blacktriangleright Clustering: find groupings of x_i
- Density estimation: find $p(x_i)$
- \blacktriangleright Generative models.
- \blacktriangleright ...
- Supervised machine learning: given a training dataset $\{x_i, y_i\}$, predict \hat{v}_i of previously unseen samples.

KORKARYKERKER POLO

- Regression: the target variables y_i are continuous.
- \blacktriangleright Classification: the target variables y_i are continuous.
- \blacktriangleright ...

A simple machine learning model for regression

The predictions \hat{y}_i are a linear combination of the inputs:

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0$

 \equiv

 2990

Linear models are surprisingly useful and common

Fetal weight estimate from ultrasound imaging:

fetal weight = $\hat{w}_0 + \hat{w}_1 \times$ femur len. + $\hat{w}_2 \times$ abdominal circ. + $\hat{w}_3 \times$ head circ.

KORK ERKER ADAM ADA

Figure source: my daughter

Linear model

$$
\blacktriangleright \text{ Input vector } \mathbf{x}^T = (x_1, x_2, \ldots, x_p).
$$

 \triangleright Output y predicted using the model

$$
\hat{y} = \hat{w}_0 + \sum_{j=1}^p x_j \hat{w}_j
$$

 \blacktriangleright In vector form

$$
\hat{y} = \hat{\boldsymbol{w}}^T \mathbf{x} = \mathbf{x}^T \hat{\boldsymbol{w}}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

 \triangleright We assume that w_0 is in w and 1 is included in x.

 \triangleright We need to find coefficients \hat{w}_i which minimise the error estimated with the residual sum of squares

$$
RSS(\mathbf{w}) = \sum_{i=1}^N (y_i - \mathbf{x}_i^T \mathbf{w})^2
$$

assuming N input-output pairs (the dataset).

- \triangleright RSS(*w*) is a quadratic function.
- \blacktriangleright A minimum always exists.

 \blacktriangleright $\mathbf{y} = [y_1, y_2, \dots, y_N]^T$ is the vector formed from the N output values and X is an $N \times p$ matrix where each row corresponds to one example x_i

$$
RSS(\mathbf{w}) = (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})
$$

If $X^T X$ is non-singular there exists a unique solution given by

$$
\hat{\mathbf{w}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}
$$

.

 \blacktriangleright For each input x_i there corresponds the fitted output

$$
\hat{y}_i = \hat{y}_i(\mathbf{x}_i) = \hat{\mathbf{w}}^T \mathbf{x}_i
$$

- \blacktriangleright This is called "making a prediction" for x_i .
- \triangleright The entire fitted surface (hyperplane) is fully characterised by the parameter vector \hat{w} .
- \blacktriangleright After fitting the model, we can "discard" the training dataset.

- \blacktriangleright Collect dataset $\{x_i, y_i\}$.
- Assume a model for \hat{y} .
- \triangleright Decide on an error/loss function that measures the "goodness of fit" of \hat{y} to $\{x_i, y_i\}$.
- \blacktriangleright Fit the model to the data with an optimisation procedure (e.g. gradient-based optimisation).

KORKARYKERKER POLO

But what if a linear model is not enough?

メロトメ 御 トメ きょくきょ 重 299 \triangleright The linear regression algorithm can be generalised to include all polynomial functions instead of just the linear ones.

• Moving to degree two we obtain: $\hat{y} = b + w_1x + w_2x^2$.

- \triangleright The linear regression algorithm can be generalised to include all polynomial functions instead of just the linear ones.
- Moving to degree two we obtain: $\hat{y} = b + w_1x + w_2x^2$.
	- In This can be seen as adding a new feature x^2 .
	- In fact, we can generalise this approach to create all sorts of hypothesis spaces, e.g.: $\hat{y} = b + w_1x + w_2 \sin(x) + w_3\sqrt{x}$.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

 \triangleright The output is still a linear function of the parameters, so it can be fitted with least squares.

Polynomial regression

A comparison of a linear, degree-4, and degree-12 polynomials as predictors

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

Polynomial regression

A comparison of a linear, degree-4, and degree-12 polynomials as predictors

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

 \triangleright The central challenge in machine learning is to design an algorithm that will perform well on new data (different from the training set data).

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

 \blacktriangleright This ability is called generalisation.

Generalisation

- \triangleright During the training (learning) we aim at reducing the training error.
- If that is the end goal, we only have an optimisation problem, not a machine learning one.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0$

 \Rightarrow Ω

Example: Linear regression

 \blacktriangleright Previously, we trained the model by minimising the training error

$$
\frac{1}{m(\text{train})}\left\|\boldsymbol{X}^{(\text{train})}\hat{\boldsymbol{w}} - \boldsymbol{y}^{(\text{train})}\right\|_{2}^{2}
$$

 \triangleright We would like actually to minimise the test error

$$
\frac{1}{m(\text{test})}\left\|\boldsymbol{X}^{\text{(test)}}\hat{\boldsymbol{w}}-\boldsymbol{y}^{\text{(test)}}\right\|_{2}^{2}
$$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ \Rightarrow QQ

Statistical learning theory

- \triangleright Statistical learning theory provides methods to mathematically reason about the performance on the test set although we can observe only the training set.
- \triangleright This is possible under some assumptions about the data sets
	- \blacktriangleright The training and test data are generated by drawing from a probability distribution over data sets. We refer to that as data-generating process.
	- \blacktriangleright i.i.d. assumptions
		- \blacktriangleright Examples in each data sets are independent from each other.
		- \blacktriangleright The training data set and the test data set are identically distributed, i.e., drawn from the same probability distribution.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

- \triangleright The factor that determines how well a machine algorithm will perform is its ability to
	- 1. Make the training error small.
	- 2. Make the difference between the training and test error small.

KORKARYKERKER POLO

 \triangleright These two factors correspond to the two central challenges in machine learning: underfitting and overfitting.

Underfitting and overfitting in polynomial estimation

- \triangleright Models with low capacity are not up to the task.
- \triangleright Models with high-capacity can solve a complex task, but when the capacity is too high for the concrete (training) task there is the danger of overfitting.

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 -990

- \triangleright Simpler functions generalise more easily, but we still need to choose a sufficiently complex hypothesis (function) to obtain small training error.
- \blacktriangleright Typically training error decreases with the increase of the model capacity until an (asymptotic) value is reached.
- \blacktriangleright The generalisation error is U-shaped with the capacity range split in an underfitting and an overfitting zone.

Generalisation and capacity

KOKK@KKEKKEK E 1990

Regularisation

 \blacktriangleright In addition to increasing and decreasing of the hypothesis space, i.e., the capacity, we can influence the learning algorithm by giving preference to one solution over another in the hypothesis space.

 \blacktriangleright E.g., prefer smaller weights **w**:

 $L(\mathbf{w}) = RSS(\mathbf{w}) + \lambda \mathbf{w}^{\mathsf{T}} \mathbf{w}$

KORKARYKERKER POLO

Summary

- \triangleright Machine learning studies algorithms that learn from examples instead of relying on manually written rules.
- \triangleright The linear model is conceptually simple but practically useful and can be seen as the basic building block of neural networks.
- \triangleright The central challenge in machine learning is to find a model that will perform well on new data. This ability is called generalisation.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →