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Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence - first machine learning, then
deep learning, a subset of machine learning - have created ever larger disruptions.

Figure source: nvidia.com
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Course overview

09.30 - 10.15 Machine learning fundamentals
10.30 - 11.15 From linear models to deep neural networks
11.30 - 12.00 Convolutional neural networks

Lunch break

13.00 - 14.00 Training neural networks in your web browser
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Learning goals

» Define machine learning.

» Introduce the conceptually simple yet practically useful linear
model.

» Discuss the central challenge of machine learning:
generalisation.



An example from my past work: nuclei area measurement

algorithm).

2010-2011: An image processing pipeline of (mainly)
mathematical morphology operators (e.g. the watershed

The design and validation of the processing pipeline took the
better part of a year.

Figure source: Veta et al. PLOS ONE 2012




An example from my past work: nuclei area measurement

2015: A deep neural network for nuclei area measurement.
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The the training and validation of the deep neural network model
took less than a week.

The results were more accurate than the the original method.

Figure source: Veta et al. MICCAI 2016



The central premise of machine learning

Learn “computer programs’ from examples instead of manually
writing rules.



The central premise of machine learning

Learn “computer programs’ from examples instead of manually
writing rules.

Advantage: the same method (e.g. a neural network) can be used
to solve a variety of different problems.
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Siberian hustky vs. eskimo dog Normal vs. metastases

Figures source: (left) Szegedy et al. arXiv 2014, (right) camelyon16.grand-challenge.org



What are the "examples”?

Depends on the particular problem and task.

Dataset: cardiac MRI images.
Task: detect if a specific pathology is present in each image.

In this case, every image is an example and is associated with a binary
target: 0 = “healthy”, 1 = "diseased” (i.e. we want to classify each
image as “healthy” or “diseases”).



What are the "examples”?

Dataset: cardiac MRl images.
Task: Segment the contours of the left ventricle

In this case, each pixel is an example and is associated with a binary
target: 0 = “"background”, 1 = “contour”.



How are the “examples” represented?

Traditionally with feature extraction:



How are the “examples” represented?

With raw pixel values (the de facto standard for deep learning):



In summary...

In order to design a machine learning algorithm for a specific task
we are given a dataset of examples represented by x;.

Each example is (optionally) associated with a target y;.

The target can be categorical, such as class membership (e.g.
yi = {0,1}), or continuous (e.g. area, volume etc.).



Types of machine learning

» Unsupervised machine learning: given a dataset x;, find “some
interesting properties” .
» Clustering: find groupings of x;
» Density estimation: find p(x;)
» Generative models.
> .

» Supervised machine learning: given a training dataset {x;, y;},
predict y; of previously unseen samples.
» Regression: the target variables y; are continuous.

» Classification: the target variables y; are continuous.
|



A simple machine learning model for regression

The predictions y; are a linear combination of the inputs:

Linear regression
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Linear models are surprisingly useful and common

Fetal weight estimate from ultrasound imaging:

fetal weight = Wy + Wy xfemur len. + Wy xabdominal circ. +
w3 X head circ.

Figure source: my daughter



Linear model

> Input vector xT = (x1, X2, ..., Xp).
» Qutput y predicted using the model
y=wo+ X0 xW
» In vector form
g=wix=x"w

> We assume that wy is in w and 1 is included in x.



Linear model fit by least squares

» We need to find coefficients w; which minimise the error
estimated with the residual sum of squares

RSS(w) = Z()’i - x w)?

assuming N input-output pairs (the dataset).
» RSS(w) is a quadratic function.

> A minimum always exists.



Linear model fit by least squares

> y =[y1,y2,...,yn]" is the vector formed from the N output
values and X is an N x p matrix where each row corresponds
to one example x;

RSS(w) = (y — Xw)" (y — Xw)

» If X7 X is non-singular there exists a unique solution given by

w=(X"TX)"1xTy



Linear model fit by least squares

» For each input x; there corresponds the fitted output

Vi = 9i(x) = w'x

» This is called “making a prediction” for x;.

» The entire fitted surface (hyperplane) is fully characterised by
the parameter vector w.

> After fitting the model, we can “discard” the training dataset.



The ML workflow (thus far)

» Collect dataset {x;,y;}.

v

Assume a model for y.

» Decide on an error/loss function that measures the
“goodness of fit" of y to {x;,yi}.

» Fit the model to the data with an optimisation procedure (e.g.

gradient-based optimisation).



But what if a linear model is not enough?

Linear regression

5
0.
_5.
>
_10.
_15.
.o ® Data
—— Linear regression
-20 T T T T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 050 0.75 1.00
X
A A p .
Y=o+ D_i_g xiWj

A

g=x"w



Polynomial regression

» The linear regression algorithm can be generalised to include

all polynomial functions instead of just the linear ones.

> Moving to degree two we obtain: § = b+ wix + wox?.



Polynomial regression

» The linear regression algorithm can be generalised to include

all polynomial functions instead of just the linear ones.

> Moving to degree two we obtain: § = b+ wix + wox?.

» This can be seen as adding a new feature x°.
» In fact, we can generalise this approach to create all sorts of

hypothesis spaces, e.g.: § = b+ wix + wa sin (x) + ws/x.
» The output is still a linear function of the parameters, so it
can be fitted with least squares.



Polynomial regression

A comparison of a linear, degree-4, and degree-12 polynomials as
predictors
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Polynomial regression

A comparison of a linear, degree-4, and degree-12 polynomials as

predictors

Polynomial regression
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Generalisation

» The central challenge in machine learning is to design an
algorithm that will perform well on new data (different from
the training set data).

» This ability is called generalisation.



Generalisation

» During the training (learning) we aim at reducing the training
error.

» If that is the end goal, we only have an optimisation problem,
not a machine learning one.

Linear regression Linear regression
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Example: Linear regression
» Previously, we trained the model by minimising the training

error
1 Hx(train)ﬁ,_y(train)H2

m(train) 2
> We would like actually to minimise the test error

2

1 H x(test) 2 y(test)H
test) 2

ml(

Linear regression

Linear regression
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Statistical learning theory

> Statistical learning theory provides methods to
mathematically reason about the performance on the test set
although we can observe only the training set.
» This is possible under some assumptions about the data sets
» The training and test data are generated by drawing from a
probability distribution over data sets. We refer to that as

data-generating process.
» i.i.d. assumptions
P> Examples in each data sets are independent from each other.
» The training data set and the test data set are identically
distributed, i.e., drawn from the same probability distribution.



Underfitting and overfitting

» The factor that determines how well a machine algorithm will
perform is its ability to

1. Make the training error small.
2. Make the difference between the training and test error small.
» These two factors correspond to the two central challenges in
machine learning: underfitting and overfitting.



Underfitting and overfitting in polynomial estimation

> Models with low capacity are not up to the task.

» Models with high-capacity can solve a complex task, but when
the capacity is too high for the concrete (training) task there
is the danger of overfitting.

aaaaa




Generalisation and capacity

» Simpler functions generalise more easily, but we still need to
choose a sufficiently complex hypothesis (function) to obtain
small training error.

» Typically training error decreases with the increase of the
model capacity until an (asymptotic) value is reached.

» The generalisation error is U-shaped with the capacity range
split in an underfitting and an overfitting zone.



Generalisation and capacity

= Training error

- Generalization error
Underfitting Overfitting

I Generalization gap

0 Capacity

Error




Regularisation

» In addition to increasing and decreasing of the hypothesis
space, i.e., the capacity, we can influence the learning
algorithm by giving preference to one solution over
another in the hypothesis space.

> E.g., prefer smaller weights w:

L(w) = RSS(w) + A\wTw

polynomial functions linear functions preferred linear functions



Summary

» Machine learning studies algorithms that learn from examples
instead of relying on manually written rules.

» The linear model is conceptually simple but practically useful
and can be seen as the basic building block of neural networks.

» The central challenge in machine learning is to find a model
that will perform well on new data. This ability is called
generalisation.



