
Machine learning fundamentals
Deep learning course for industry

Mitko Veta

Eindhoven University of Technology
Department of Biomedical Engineering

2020

Historical perspective

Figure source: nvidia.com

Course overview

I 09.30 - 10.15 Machine learning fundamentals

I 10.30 - 11.15 From linear models to deep neural networks

I 11.30 - 12.00 Convolutional neural networks

I Lunch break

I 13.00 - 14.00 Training neural networks in your web browser

Learning goals

I Define machine learning.

I Introduce the conceptually simple yet practically useful linear
model.

I Discuss the central challenge of machine learning:
generalisation.

An example from my past work: nuclei area measurement

2010-2011: An image processing pipeline of (mainly)
mathematical morphology operators (e.g. the watershed
algorithm).

The design and validation of the processing pipeline took the
better part of a year.

Figure source: Veta et al. PLOS ONE 2012

An example from my past work: nuclei area measurement

2015: A deep neural network for nuclei area measurement.

The the training and validation of the deep neural network model
took less than a week.

The results were more accurate than the the original method.

Figure source: Veta et al. MICCAI 2016

The central premise of machine learning

Learn “computer programs” from examples instead of manually
writing rules.

Advantage: the same method (e.g. a neural network) can be used
to solve a variety of different problems.

Siberian hustky vs. eskimo dog Normal vs. metastases

Figures source: (left) Szegedy et al. arXiv 2014, (right) camelyon16.grand-challenge.org

The central premise of machine learning

Learn “computer programs” from examples instead of manually
writing rules.

Advantage: the same method (e.g. a neural network) can be used
to solve a variety of different problems.

Siberian hustky vs. eskimo dog Normal vs. metastases

Figures source: (left) Szegedy et al. arXiv 2014, (right) camelyon16.grand-challenge.org

What are the ”examples”?

Depends on the particular problem and task.

Dataset: cardiac MRI images.
Task: detect if a specific pathology is present in each image.

In this case, every image is an example and is associated with a binary
target: 0 = “healthy”, 1 = “diseased” (i.e. we want to classify each
image as “healthy” or “diseases”).

healthydiseaseddiseased

What are the ”examples”?

Dataset: cardiac MRI images.
Task: Segment the contours of the left ventricle

In this case, each pixel is an example and is associated with a binary
target: 0 = “background”, 1 = “contour”.

How are the “examples” represented?

Traditionally with feature extraction:

Machine learning
model

x = [xintensity xtexture xshape...]

Intensity features
Texture features
Shape features

...

How are the “examples” represented?

With raw pixel values (the de facto standard for deep learning):

Machine learning
model

x = [...]

In summary...

In order to design a machine learning algorithm for a specific task
we are given a dataset of examples represented by xi .

Each example is (optionally) associated with a target yi .

The target can be categorical, such as class membership (e.g.
yi = {0, 1}), or continuous (e.g. area, volume etc.).

Types of machine learning

I Unsupervised machine learning: given a dataset xi , find “some
interesting properties”.
I Clustering: find groupings of xi
I Density estimation: find p(xi)
I Generative models.
I ...

I Supervised machine learning: given a training dataset {xi , yi},
predict ŷi of previously unseen samples.
I Regression: the target variables yi are continuous.
I Classification: the target variables yi are continuous.
I ...

A simple machine learning model for regression

The predictions ŷi are a linear combination of the inputs:

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y
Linear regression

Data
Linear regression

ŷ = ŵ0 +
∑p

j=1 xj ŵj

Linear models are surprisingly useful and common

Fetal weight estimate from ultrasound imaging:

fetal weight = ŵ0 + ŵ1×femur len. + ŵ2×abdominal circ. +
ŵ3×head circ.

Figure source: my daughter

Linear model

I Input vector xT = (x1, x2, . . . , xp).

I Output y predicted using the model

ŷ = ŵ0 +
∑p

j=1 xj ŵj

I In vector form

ŷ = ŵTx = xT ŵ
I We assume that w0 is in w and 1 is included in x .

Linear model fit by least squares

I We need to find coefficients ŵi which minimise the error
estimated with the residual sum of squares

RSS(w) =
N∑
i=1

(yi − xT
i w)2

assuming N input-output pairs (the dataset).

I RSS(w) is a quadratic function.

I A minimum always exists.

Linear model fit by least squares

I y = [y1, y2, . . . , yN]T is the vector formed from the N output
values and X is an N × p matrix where each row corresponds
to one example xi

RSS(w) = (y − Xw)T (y − Xw)

I If XTX is non-singular there exists a unique solution given by

ŵ = (XTX)−1XTy

Linear model fit by least squares

I For each input xi there corresponds the fitted output

ŷi = ŷi (xi) = ŵTxi

.

I This is called “making a prediction” for xi .
I The entire fitted surface (hyperplane) is fully characterised by

the parameter vector ŵ .

I After fitting the model, we can “discard” the training dataset.

The ML workflow (thus far)

I Collect dataset {xi , yi}.
I Assume a model for ŷ .

I Decide on an error/loss function that measures the
“goodness of fit” of ŷ to {xi , yi}.

I Fit the model to the data with an optimisation procedure (e.g.
gradient-based optimisation).

But what if a linear model is not enough?

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5
y

Linear regression

Data
Linear regression

ŷ = ŵ0 +
∑p

i=1 xi ŵi

ŷ = xT ŵ

Polynomial regression

I The linear regression algorithm can be generalised to include
all polynomial functions instead of just the linear ones.

I Moving to degree two we obtain: ŷ = b + w1x + w2x
2.

I This can be seen as adding a new feature x2.
I In fact, we can generalise this approach to create all sorts of

hypothesis spaces, e.g.: ŷ = b + w1x + w2 sin (x) + w3
√
x .

I The output is still a linear function of the parameters, so it
can be fitted with least squares.

Polynomial regression

I The linear regression algorithm can be generalised to include
all polynomial functions instead of just the linear ones.

I Moving to degree two we obtain: ŷ = b + w1x + w2x
2.

I This can be seen as adding a new feature x2.
I In fact, we can generalise this approach to create all sorts of

hypothesis spaces, e.g.: ŷ = b + w1x + w2 sin (x) + w3
√
x .

I The output is still a linear function of the parameters, so it
can be fitted with least squares.

Polynomial regression

A comparison of a linear, degree-4, and degree-12 polynomials as
predictors

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Linear regression

Data
Linear regression
Error

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Polynomial regression

Data
Poly. reg. deg = 4
Error

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
20

15

10

5

0

5
Polynomial regression

Data
Poly. reg. deg = 12
Error

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Linear regression

Data
Linear regression
Test set

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Polynomial regression

Data
Poly. reg. deg = 4
Test set

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
20

15

10

5

0

5
Polynomial regression

Data
Poly. reg. deg = 12
Test set

Polynomial regression

A comparison of a linear, degree-4, and degree-12 polynomials as
predictors

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Linear regression

Data
Linear regression
Error

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Polynomial regression

Data
Poly. reg. deg = 4
Error

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
20

15

10

5

0

5
Polynomial regression

Data
Poly. reg. deg = 12
Error

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Linear regression

Data
Linear regression
Test set

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Polynomial regression

Data
Poly. reg. deg = 4
Test set

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
20

15

10

5

0

5
Polynomial regression

Data
Poly. reg. deg = 12
Test set

Generalisation

I The central challenge in machine learning is to design an
algorithm that will perform well on new data (different from
the training set data).

I This ability is called generalisation.

Generalisation

I During the training (learning) we aim at reducing the training
error.

I If that is the end goal, we only have an optimisation problem,
not a machine learning one.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Linear regression

Data
Linear regression
Error

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Linear regression

Data
Linear regression
Test set

Example: Linear regression

I Previously, we trained the model by minimising the training
error

1

m(train)

∥∥∥X (train)ŵ − y(train)
∥∥∥2
2

I We would like actually to minimise the test error

1

m(test)

∥∥∥X (test)ŵ − y(test)
∥∥∥2
2

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Linear regression

Data
Linear regression
Error

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Linear regression

Data
Linear regression
Test set

Statistical learning theory

I Statistical learning theory provides methods to
mathematically reason about the performance on the test set
although we can observe only the training set.

I This is possible under some assumptions about the data sets
I The training and test data are generated by drawing from a

probability distribution over data sets. We refer to that as
data-generating process.

I i.i.d. assumptions
I Examples in each data sets are independent from each other.
I The training data set and the test data set are identically

distributed, i.e., drawn from the same probability distribution.

Underfitting and overfitting

I The factor that determines how well a machine algorithm will
perform is its ability to

1. Make the training error small.
2. Make the difference between the training and test error small.

I These two factors correspond to the two central challenges in
machine learning: underfitting and overfitting.

Underfitting and overfitting in polynomial estimation

I Models with low capacity are not up to the task.

I Models with high-capacity can solve a complex task, but when
the capacity is too high for the concrete (training) task there
is the danger of overfitting.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Linear regression

Data
Linear regression
Test set

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Polynomial regression

Data
Poly. reg. deg = 4
Test set

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
20

15

10

5

0

5
Polynomial regression

Data
Poly. reg. deg = 12
Test set

Generalisation and capacity

I Simpler functions generalise more easily, but we still need to
choose a sufficiently complex hypothesis (function) to obtain
small training error.

I Typically training error decreases with the increase of the
model capacity until an (asymptotic) value is reached.

I The generalisation error is U-shaped with the capacity range
split in an underfitting and an overfitting zone.

Generalisation and capacity

Er
ro

r

0 Capacity

Generalization gap

Under�tting Over�tting
Generalization error
Training error

Regularisation

I In addition to increasing and decreasing of the hypothesis
space, i.e., the capacity, we can influence the learning
algorithm by giving preference to one solution over
another in the hypothesis space.

I E.g., prefer smaller weights w:

L(w) = RSS(w) + λwᵀw

Summary

I Machine learning studies algorithms that learn from examples
instead of relying on manually written rules.

I The linear model is conceptually simple but practically useful
and can be seen as the basic building block of neural networks.

I The central challenge in machine learning is to find a model
that will perform well on new data. This ability is called
generalisation.

