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Learning goals

I Demonstrate how deep neural networks can be modified to be
more suitable for image data.
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The number of parameters explodes with larger image sizes
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The “+1” comes from the biases wi,0.
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Towards convolutional neural networks

Example (1-D image for simplicity): 5× 1 input image, 3 hidden
neurons.
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Note: the poor biases are again, ignored, but there are three of them in each case
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Towards convolutional neural networks

Let the outputs of the three neurons be σ(a1), σ(a2), σ(a3). Then:

x1

x2

x5

x3

x4

x1 ...

...

...

a1 = x1w1 + x2w2 + x3w3

a2 = x2w1 + x3w2 + x4w3

a3 = x3w1 + x4w2 + x5w3

[a1, a2, a3] = [x1, x2, x3, x4, x5] ∗ [w3,w2,w1]

, where ∗ is the convolution operator, thus a convolutional layer.
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Motivation (or rather a justification)
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Towards convolutional neural networks in 2D

5×5 image 3×3 hidden layer
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Adding a second feature map
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Convolution with padding

Figure source: https://github.com/vdumoulin/conv arithmetic



Computing the output size

output size =
input size− kernel size + 2× padding

stride
+ 1

In this example: input size = 5, kernel size = 3, padding = 1, stride = 1.
The output size is (5− 3 + 2× 1)/1 + 1 = 5.



Motivation (or rather justification) for CNNs

The features of interest can appear at different locations in the
image.
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Motivation (or rather a consequence) for deep CNNs

The network learns low-level features in the first layers, and builds
up towards more complex features in the deeper layers: intensity
→ edges and colour blobs → junctions → shapes → etc.

Figure source: nvidia.com



Equivariance and invariance to translation

The convolutional layers are equivariant with translation: as the
input is translated, the output is translated in a predictable
manner.

A desired property of neural networks for classification is
invariance: as the input is translated, the output remains the
same.

Partial translational invariance of CNNs is achieved with the
max-pooling operator.

Note: there are other types of invariance e.g. rotational.
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Max-pooling

A max-pool with a 2× 2 kernel stride and size 2 (most common
form) will reduce the image size by 2 in each dimension (a useful
side-effect).



A “typical” CNN architecture for 2D image classification

Note that the convolution is a linear operation so non-linearities
(such as ReLU) are still needed.

Convolution (k:3, p:1, s:1) Max-pool (k:2: p:0, s:2) Convolution (k:3, p:1, s:1) Max-pool (k:2: p:0, s:2)

Fully connected (100 neurons)

1@64x64

16@64x64
16@32x32

32@32x32 32@16x16

1x100

1x1
Output neuron

Convolutional block 1 Convolutional block n...



Summary

I Compared to fully connected neural networks, convolutional
neural networks have sparse connectivity and weight sharing,
which makes them suitable for image data.
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