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Learning goals

» Demonstrate how deep neural networks can be modified to be
more suitable for image data.



Images as inputs to a neural network
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Images as inputs to a neural network
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Images as inputs to a neural network

3 hidden 1 output
5x5image neurons neurons

The biases w; ¢ are not shown.



Images as inputs to a neural network
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The number of parameters explodes with larger image sizes
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The number of parameters explodes with larger image sizes
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# parameters = (height x width x # channels + 1) x #neurons

The “+1" comes from the biases w; g.



Towards convolutional neural networks

Example (1-D image for simplicity): 5 x 1 input image, 3 hidden
neurons.

full connectivity: 15
parameters
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Example (1-D image for simplicity): 5 x 1 input image, 3 hidden
neurons.

full connectivity: 15  sparse connectivity:
parameters 9 parameters



Towards convolutional neural networks

Example (1-D image for simplicity): 5 x 1 input image, 3 hidden
neurons.

full connectivity: 15  sparse connectivity: shared weights: 3
parameters 9 parameters parameters

Note: the poor biases are again, ignored, but there are three of them in each case



Towards convolutional neural networks

Let the outputs of the three neurons be o(a1),0(a2),0(a3). Then:

ar = xywi + xXoWo + X3ws

ay = XoW1 + X3Wo + XaW3

asz = x3wy + XgWo + Xs w3




Towards convolutional neural networks

Let the outputs of the three neurons be o(a1),0(a2),0(a3). Then:

ar = xywi + xXoWo + X3ws

ay = XoW1 + X3Wo + XaW3

asz = x3wy + XgWo + Xs w3

[a1, @2, a3] = [x1, X2, X3, Xa, Xs5] * [w3, wo, wi]

, Where x is the convolution operator, thus a convolutional layer.



Motivation (or rather a justification)

sparse connectivity shared weights
motivation: the features motivation: the features
appear locally repeat throughout the image



Towards convolutional neural networks in 2D

5%5 image 3%3 hidden layer



Towards convolutional neural networks in 2D
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Towards convolutional neural networks in 2D
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Towards convolutional neural networks in 2D
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Towards convolutional neural networks in 2D
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Towards convolutional neural networks in 2D
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Adding a second feature map

5%5 image 3x3x2 hidden layer
(2 feature maps)



Adding a second feature map
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Adding a second feature map
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Convolution with padding
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Figure source: https://github.com/vdumoulin/conv_arithmetic



Computing the output size

S

input size — kernel size + 2 x padding 41

output size = -
P stride

In this example: input size = 5, kernel size = 3, padding = 1, stride = 1.
The output size is (5 —3+2x 1)/1+1=05.



Motivation (or rather justification) for CNNs

image.

The features of interest can appear at different locations in the

DA



Kernels and feature maps



Kernels and feature maps



Motivation (or rather a consequence) for deep CNNs

The network learns low-level features in the first layers, and builds
up towards more complex features in the deeper layers: intensity
— edges and colour blobs — junctions — shapes — etc.

Figure source: nvidia.com



Equivariance and invariance to translation

The convolutional layers are equivariant with translation: as the
input is translated, the output is translated in a predictable
manner.



Equivariance and invariance to translation

The convolutional layers are equivariant with translation: as the
input is translated, the output is translated in a predictable
manner.

A desired property of neural networks for classification is
invariance: as the input is translated, the output remains the
same.

Partial translational invariance of CNNs is achieved with the
max-pooling operator.

Note: there are other types of invariance e.g. rotational.



Max-pooling
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A max-pool with a 2 x 2 kernel stride and size 2 (most common
form) will reduce the image size by 2 in each dimension (a useful
side-effect).



A “typical” CNN architecture for 2D image classification

Note that the convolution is a linear operation so non-linearities
(such as ReLU) are still needed.



Summary

» Compared to fully connected neural networks, convolutional
neural networks have sparse connectivity and weight sharing,
which makes them suitable for image data.
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