Convolutional neural networks Deep learning course for industry

Mitko Veta

Eindhoven University of Technology Department of Biomedical Engineering

2020

 \triangleright Demonstrate how deep neural networks can be modified to be more suitable for image data.

KO K K Ø K K E K K E K V K K K K K K K K K

5×5 image

3 hidden neurons 1 output neurons

5×5 image

3 hidden neurons 1 output neurons

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

The biases $w_{i,0}$ are not shown.

5×5 image

neurons 1 output neurons

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

The number of parameters explodes with larger image sizes

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

The number of parameters explodes with larger image sizes

parameters = (height \times width \times # channels + 1) \times # neurons The "+1" comes from the biases $w_{i,0}$.

KORK ERKER ADA ADA KORA

Example (1-D image for simplicity): 5×1 input image, 3 hidden neurons.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

full connectivity: 15 parameters

Example (1-D image for simplicity): 5×1 input image, 3 hidden neurons.

full connectivity: 15 parameters

sparse connectivity: 9 parameters

KORK EXTERNE PROVIDE

Example (1-D image for simplicity): 5×1 input image, 3 hidden neurons.

full connectivity: 15 parameters

sparse connectivity: 9 parameters

shared weights: 3 parameters

KORKARYKERKER POLO

Note: the poor biases are again, ignored, but there are three of them in each case

Let the outputs of the three neurons be $\sigma(a_1), \sigma(a_2), \sigma(a_3)$. Then:

KORK EXTERNE PROVIDE

Let the outputs of the three neurons be $\sigma(a_1), \sigma(a_2), \sigma(a_3)$. Then:

$$
[a_1, a_2, a_3] = [x_1, x_2, x_3, x_4, x_5] * [w_3, w_2, w_1]
$$

, where ∗ is the convolution operator, thus a convolutional layer.

KORKARYKERKER POLO

Motivation (or rather a justification)

sparse connectivity motivation: the features appear locally

shared weights motivation: the features repeat throughout the image

KORKARYKERKER POLO

5×5 image 3×3 hidden layer

5×5 image 3×3 hidden layer

K ロ ▶ K 個 ▶ K 결 ▶ K 결 ▶ │ 결 │ K 9 Q Q

5×5 image 3×3 hidden layer

5×5 image 3×3 hidden layer

5×5 image 3×3 hidden layer

5×5 image 3×3 hidden layer

Adding a second feature map

5×5 image 3×3×2 hidden layer (2 feature maps)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 →) 익 Q Q

Adding a second feature map

5×5 image 3×3×2 hidden layer (2 feature maps)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 →) 익 Q Q

Adding a second feature map

5×5 image 3×3×2 hidden layer (2 feature maps)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 →) 익 Q Q

Convolution with padding

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Figure source: https://github.com/vdumoulin/conv_arithmetic

Computing the output size

In this example: input size = 5, kernel size = 3, padding = 1, stride = 1. The output size is $(5 - 3 + 2 \times 1)/1 + 1 = 5$.

Motivation (or rather justification) for CNNs

The features of interest can appear at different locations in the image.

Kernels and feature maps

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Kernels and feature maps

Motivation (or rather a consequence) for deep CNNs

The network learns low-level features in the first layers, and builds up towards more complex features in the deeper layers: intensity \rightarrow edges and colour blobs \rightarrow junctions \rightarrow shapes \rightarrow etc.

 $A \equiv \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \cdots \oplus \mathbf{1}$

 000

Figure source: nvidia.com

The convolutional layers are equivariant with translation: as the input is translated, the output is translated in a predictable manner.

The convolutional layers are equivariant with translation: as the input is translated, the output is translated in a predictable manner.

A desired property of neural networks for classification is invariance: as the input is translated, the output remains the same.

Partial translational invariance of CNNs is achieved with the max-pooling operator.

KORK ERKER ADAM ADA

Note: there are other types of invariance e.g. rotational.

Max-pooling

A max-pool with a 2×2 kernel stride and size 2 (most common form) will reduce the image size by 2 in each dimension (a useful side-effect).

KORK EXTERNE PROVIDE

A "typical" CNN architecture for 2D image classification

Note that the convolution is a linear operation so non-linearities (such as ReLU) are still needed.

KORK EXTERNE PROVIDE

Summary

 \triangleright Compared to fully connected neural networks, convolutional neural networks have sparse connectivity and weight sharing, which makes them suitable for image data.