
Convolutional neural networks
Deep learning course for industry

Mitko Veta

Eindhoven University of Technology
Department of Biomedical Engineering

2020

Learning goals

I Demonstrate how deep neural networks can be modified to be
more suitable for image data.

Images as inputs to a neural network

5×5 image
3 hidden
neurons

1 output
neurons

Images as inputs to a neural network

5×5 image
3 hidden
neurons

1 output
neurons

Images as inputs to a neural network

5×5 image
3 hidden
neurons

1 output
neurons

The biases wi,0 are not shown.

Images as inputs to a neural network

5×5 image
3 hidden
neurons

1 output
neurons

The number of parameters explodes with larger image sizes

10×10 image
3 hidden
neurons

×100

×100

×100

parameters = (height× width×# channels + 1)×#neurons
The “+1” comes from the biases wi,0.

The number of parameters explodes with larger image sizes

10×10 image
3 hidden
neurons

×100

×100

×100

parameters = (height× width×# channels + 1)×#neurons
The “+1” comes from the biases wi,0.

Towards convolutional neural networks

Example (1-D image for simplicity): 5× 1 input image, 3 hidden
neurons.

x1

x2

x5

x3

x4

x1 ...

...

...

full connectivity: 15
parameters

x1

x2

x5

x3

x4

...

...

...

sparse connectivity:
9 parameters

x1

x2

x5

x3

x4

x1 ...

...

...

shared weights: 3
parameters

Note: the poor biases are again, ignored, but there are three of them in each case

Towards convolutional neural networks

Example (1-D image for simplicity): 5× 1 input image, 3 hidden
neurons.

x1

x2

x5

x3

x4

x1 ...

...

...

full connectivity: 15
parameters

x1

x2

x5

x3

x4

...

...

...

sparse connectivity:
9 parameters

x1

x2

x5

x3

x4

x1 ...

...

...

shared weights: 3
parameters

Note: the poor biases are again, ignored, but there are three of them in each case

Towards convolutional neural networks

Example (1-D image for simplicity): 5× 1 input image, 3 hidden
neurons.

x1

x2

x5

x3

x4

x1 ...

...

...

full connectivity: 15
parameters

x1

x2

x5

x3

x4

...

...

...

sparse connectivity:
9 parameters

x1

x2

x5

x3

x4

x1 ...

...

...

shared weights: 3
parameters

Note: the poor biases are again, ignored, but there are three of them in each case

Towards convolutional neural networks

Let the outputs of the three neurons be σ(a1), σ(a2), σ(a3). Then:

x1

x2

x5

x3

x4

x1 ...

...

...

a1 = x1w1 + x2w2 + x3w3

a2 = x2w1 + x3w2 + x4w3

a3 = x3w1 + x4w2 + x5w3

[a1, a2, a3] = [x1, x2, x3, x4, x5] ∗ [w3,w2,w1]

, where ∗ is the convolution operator, thus a convolutional layer.

Towards convolutional neural networks

Let the outputs of the three neurons be σ(a1), σ(a2), σ(a3). Then:

x1

x2

x5

x3

x4

x1 ...

...

...

a1 = x1w1 + x2w2 + x3w3

a2 = x2w1 + x3w2 + x4w3

a3 = x3w1 + x4w2 + x5w3

[a1, a2, a3] = [x1, x2, x3, x4, x5] ∗ [w3,w2,w1]

, where ∗ is the convolution operator, thus a convolutional layer.

Motivation (or rather a justification)

x1

x2

x5

x3

x4

...

...

...

sparse connectivity
motivation: the features

appear locally

x1

x2

x5

x3

x4

x1 ...

...

...

shared weights
motivation: the features

repeat throughout the image

Towards convolutional neural networks in 2D

5×5 image 3×3 hidden layer

Towards convolutional neural networks in 2D

5×5 image 3×3 hidden layer

Towards convolutional neural networks in 2D

5×5 image 3×3 hidden layer

Towards convolutional neural networks in 2D

5×5 image 3×3 hidden layer

Towards convolutional neural networks in 2D

5×5 image 3×3 hidden layer

Towards convolutional neural networks in 2D

5×5 image 3×3 hidden layer

Adding a second feature map

5×5 image 3×3×2 hidden layer
(2 feature maps)

Adding a second feature map

5×5 image 3×3×2 hidden layer
(2 feature maps)

Adding a second feature map

5×5 image 3×3×2 hidden layer
(2 feature maps)

Convolution with padding

Figure source: https://github.com/vdumoulin/conv arithmetic

Computing the output size

output size =
input size− kernel size + 2× padding

stride
+ 1

In this example: input size = 5, kernel size = 3, padding = 1, stride = 1.
The output size is (5− 3 + 2× 1)/1 + 1 = 5.

Motivation (or rather justification) for CNNs

The features of interest can appear at different locations in the
image.

Kernels and feature maps

1@128x128

9@128x128

conv. kernel

feature maps

Kernels and feature maps

1@128x128

9@128x128

conv. kernel

feature maps

convolutional kernels feature maps

Motivation (or rather a consequence) for deep CNNs

The network learns low-level features in the first layers, and builds
up towards more complex features in the deeper layers: intensity
→ edges and colour blobs → junctions → shapes → etc.

Figure source: nvidia.com

Equivariance and invariance to translation

The convolutional layers are equivariant with translation: as the
input is translated, the output is translated in a predictable
manner.

A desired property of neural networks for classification is
invariance: as the input is translated, the output remains the
same.

Partial translational invariance of CNNs is achieved with the
max-pooling operator.

Note: there are other types of invariance e.g. rotational.

Equivariance and invariance to translation

The convolutional layers are equivariant with translation: as the
input is translated, the output is translated in a predictable
manner.

A desired property of neural networks for classification is
invariance: as the input is translated, the output remains the
same.

Partial translational invariance of CNNs is achieved with the
max-pooling operator.

Note: there are other types of invariance e.g. rotational.

Max-pooling

A max-pool with a 2× 2 kernel stride and size 2 (most common
form) will reduce the image size by 2 in each dimension (a useful
side-effect).

A “typical” CNN architecture for 2D image classification

Note that the convolution is a linear operation so non-linearities
(such as ReLU) are still needed.

Convolution (k:3, p:1, s:1) Max-pool (k:2: p:0, s:2) Convolution (k:3, p:1, s:1) Max-pool (k:2: p:0, s:2)

Fully connected (100 neurons)

1@64x64

16@64x64
16@32x32

32@32x32 32@16x16

1x100

1x1
Output neuron

Convolutional block 1 Convolutional block n...

Summary

I Compared to fully connected neural networks, convolutional
neural networks have sparse connectivity and weight sharing,
which makes them suitable for image data.

	2.Plus:
	2.Reset:
	2.Minus:
	2.EndRight:
	2.StepRight:
	2.PlayPauseRight:
	2.PlayRight:
	2.PauseRight:
	2.PlayPauseLeft:
	2.PlayLeft:
	2.PauseLeft:
	2.StepLeft:
	2.EndLeft:
	anm2:
	2.3:
	2.2:
	2.1:
	2.0:
	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

