
Experimental methodology for training of (deep)
machine learning models

Deep learning course for industry

Mitko Veta

Eindhoven University of Technology
Department of Biomedical Engineering

2020



Learning goals

I Introduce additional regularisation techniques.

I Discuss the proper experimental setup for model selection and
training.

I Discuss some practical considerations about training deep
neural networks.

I (bonus) The backpropagation algorithm.



Prof. Lena Fraunhofer, King’s College
London
“On the application of generative deep
learning methods in medical image analysis”

Today 17.30, Metaforum zaal 13



Regularisation



Regularisation

Regularisation is any modification to a learning algorithm intended
to reduce its generalisation error but not its training error.

Er
ro

r

0 Capacity

Generalization gap

Under�tting Over�tting
Generalization error
Training error



Regularisation

Prefer smaller weights w:

L(w) = RSS(w) + λwᵀw



Regularisation

Prefer smaller weights w:

L(w) = RSS(w) + λwᵀw



Training set size

I It is possible for the model to have optimal capacity and still
have a large gap between training and generalisation errors.

I In that case the gap usually can be reduced with increasing
the number of training examples.

Figure source: deeplearningbook.org



Data augmentation

Data augmentation: create new, plausible examples by
transforming existing examples.



Data augmentation

Which augmentations to use?

This is very problem dependent. Affine geometric transformations
and intensity transformations such as contrast, brightness and
colour are very standard.

Note that some transformations can change the class of the
example (e.g. rotating an image of the number 6 by 180 degrees).



Model averaging

Rationale: different models will make different errors. Averaging
different models can improve generalisation.

What is a “different model”? → different training set, different
neural network architecture, different initialisation...

Figure source: deeplearningbook.org



Model averaging

Rationale: different models will make different errors. Averaging
different models can improve generalisation.

What is a “different model”? → different training set, different
neural network architecture, different initialisation...

Figure source: deeplearningbook.org



Dropout

Dropout performs implicit model averaging by randomly turning off
connections during the training of the neural network.

Figure source: deeplearningbook.org



Parameter initialisation

Figure source: blog.paperspace.com



Parameter initialisation

Parameters are usually initialised with small random numbers, e.g.
drawn from a uniform distribution [−s, s].

The scale s of the initialisation is very important for the
optimisation procedure. Poorly chosen s can “stuck” the training
process (some or all of the parameters will not be updated).



Batch normalisation

This technique makes the training less sensitive to the parameter
initialisation and as a side-effect acts as a regulariser.

During each training update, the input of each layer is normalised
as follows:

x̂i ←
xi − µbatch√
σ2batch + ε

BNγ,β(xi ) = γx̂i + β

where xi is the output of the layer and µbatch and σbatch are the
mean and standard deviation of the current batch.



Transfer learning

Take the weights of an existing network trained for one problem
and either:

I Use the network weights as initialisation for a model for a
different problem.

I Use the network weights for feature extraction in combination
with another classifier.

Convolution (k:3, p:1, s:1) Max-pool (k:2: p:0, s:2) Convolution (k:3, p:1, s:1) Max-pool (k:2: p:0, s:2)

Fully connected (100 neurons)

1@64x64

16@64x64
16@32x32

32@32x32 32@16x16

1x100

1x1
Output neuron

Convolutional block 1 Convolutional block n...



The “holy trinity” of datasets



Hyperparameters

Hyperparameters are settings that can be used to control the
behaviour of the algorithm.

In general, the hyperparameters are not modified by the
learning algorithm itself.

A setting can be chosen to be a hyperparameter when it is difficult
to optimise or, more often, when its derivation from the training
set can lead to overfitting.

Example: In polynomial regression the degree of the polynomial is
a capacity hyperparameter.



Hyperparameters

Hyperparameters are settings that can be used to control the
behaviour of the algorithm.

In general, the hyperparameters are not modified by the
learning algorithm itself.

A setting can be chosen to be a hyperparameter when it is difficult
to optimise or, more often, when its derivation from the training
set can lead to overfitting.

Example: In polynomial regression the degree of the polynomial is
a capacity hyperparameter.



Hyperparameters

Question: should the hyperparameters be chosen based on the
performance on the testing set?



Validation set

The validation set is used during training to predict the behaviour
(generalisation error) of the algorithm on new data, i.e., on the
test set and to chose the hyperparameters.

Ideally these two sets are disjoint.

The training data is split in two disjoint subsets.

One subset is used to learn the parameters of the algorithm and
the other is the validation set.

The subset used to learn the parameters is still typically called a
training set.



The “holy trinity” of datasets



Validation set

Question: How large should the validation set be?

Since the validation set is used to determine the hyperparameters
it will typically underestimate the generalisation error.

However, it will usually better predict the generalisation error than
the training set.

After the completion of the hyperparameters optimisation we can
estimate the generalisation error using the test data.

In practice the testing should be done also on different test data to
avoid the test data becoming “stale”.



Validation set

Question: How large should the validation set be?

Since the validation set is used to determine the hyperparameters
it will typically underestimate the generalisation error.

However, it will usually better predict the generalisation error than
the training set.

After the completion of the hyperparameters optimisation we can
estimate the generalisation error using the test data.

In practice the testing should be done also on different test data to
avoid the test data becoming “stale”.



“Babysitting” the training process
and other practical considerations



Monitor the training and validation loss curves

Figure from: deeplearning.net



Real world training and validation curves



Inspect the kernels

Left: noisy kernels (something is/went wrong?), right: regular
kernels.



http://karpathy.github.io/2019/04/25/recipe/



Premise

I “Neural net training is a leaky abstraction’.’
I Do not consider it plug-and-play.

I “Neural net training fails silently.”
I You will not get an error message if you do something wrong.

http://karpathy.github.io/2019/04/25/recipe/



Workflow

1. Pay attention to your data

2. Make a simple baseline

3. Overfit

4. Regularize

5. Tune the hyperparameters

6. Try all the remaining “tricks”

http://karpathy.github.io/2019/04/25/recipe/



Workflow

1. Pay attention to your data

2. Make a simple baseline

3. Overfit

4. Regularize

5. Tune the hyperparameters

6. Try all the remaining “tricks”

http://karpathy.github.io/2019/04/25/recipe/



Workflow

1. Pay attention to your data

2. Make a simple baseline

3. Overfit

4. Regularize

5. Tune the hyperparameters

6. Try all the remaining “tricks”

http://karpathy.github.io/2019/04/25/recipe/



Backpropagation



Chain rule of differentiation



Backpropagation



Backpropagation



Backpropagation



Backpropagation



Summary

I There is a variety of regularisation techniques, they are often
used in combination.

I Always use the “holy trinity” of training, validation and test
subsets.

I Training of neural networks is rarely plug-and-play. There is a
large gap between “here is how a convolutional layer works”
and “our convnet achieves state of the art results”.


