
From linear models to deep neural networks
Deep learning course for industry

Mitko Veta

Eindhoven University of Technology
Department of Biomedical Engineering

2020

Learning goals

I Introduce a linear model for classification.

I Demonstrate how linear classification models can be combined
to produce more complex decision boundaries.

I Introduce the layered view of neural networks.

Previously: linear model for regression

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

20

15

10

5

0

5

y

Linear regression

Data
Linear regression

ŷ = ŵ0 +
∑p

j=1 xj ŵj

Question: Can this model be used for classification (e.g. binary
classification)?

Linear regression for a binary target

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

1.5

1.0

0.5

0.0

0.5

1.0

1.5
y

Linear regression

Data
Linear regression
Error

ŷ = ŵ0 +
∑p

j=1 xj ŵj

Towards a linear model for classification

ŷ = ŵ0 +
∑p

j=1 xj ŵj

The following changes need to be made to the linear model:

I Instead of directly predicting the value ŷ (which is not
continuous value), predict the probability that the sample
belongs to one of the classes, e.g. p(yi = 1|xi).

I p(yi = 1|xi) is a continuous value, however, it is bounded
between 0 an 1.

I In order to interpret is as a probability, ŵ0 +
∑p

j=1 xj ŵj has to
be “squashed” between 0 and 1.

Towards a linear model for classification

ŷ = ŵ0 +
∑p

j=1 xj ŵj

The following changes need to be made to the linear model:

I Instead of directly predicting the value ŷ (which is not
continuous value), predict the probability that the sample
belongs to one of the classes, e.g. p(yi = 1|xi).

I p(yi = 1|xi) is a continuous value, however, it is bounded
between 0 an 1.

I In order to interpret is as a probability, ŵ0 +
∑p

j=1 xj ŵj has to
be “squashed” between 0 and 1.

The sigmoid function

σ(a) = 1
1+e−a

Logistic regression: a linear model for classification

Linear regression: ŷ = ŵ0 +
∑p

j=1 xj ŵj

Logistic regression: p(yi = 1|xi) = σ(ŵ0 +
∑p

j=1 xj ŵj)

Logistic regression: another view

The log-odds that the sample belongs to class “1” are modelled
with a linear model:

log(p(yi=1|xi)
p(yi=0|xi)) = ŵ0 +

∑p
j=1 xj ŵj

log(p(yi=1|xi)
1−p(yi=1|xi)) = ŵ0 +

∑p
j=1 xj ŵj

Logistic regression: a linear model for classification

Logistic regression produces a linear decision boundary:

Fitting logistic regression

Given a training dataset {xi , yi}, the parameters w of the logistic
regression model can be estimated by minimising the negative
log-likelihood (NLL) of the prediction p(yi = 1|xi):

J(w) = −
N∑
i

log
[
p(yi = 1|xi ,w)yip(yi = 0|xi ,w)1−yi

]
ŵ = argmin

w
J(w)

This is, in fact, equivalent to minimising the cross-entropy between
the predictions p(yi = 1|xi) and the ground truth yi .

Gradient descent

Compared to linear regression and the residual sum of squares
function, in the case of logistic regression there is no closed-form
solution for the parameters that minimise the NLL.

The optimal parameters are found with a numerical procedure
called gradient descent.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

f
(x

) For x < 0, d
dxf(x) < 0,

f(x) will decrease
by increasing x.

For x > 0, d
dxf(x) > 0,

f(x) will decrease
by decreasing x.

For x > 0, d
dxf(x) > 0,

f(x) will decrease
by decreasing x.

For x = 0, d
dxf(x) = 0,

gradient descent stops.

f(x)=x2

2

d
dxf(x) = x

x∗ = arg min f(x)

Gradient descent

The gradient descent algorithm:

I Initialise the parameters w to some random values.
I While some stopping criterion is not met (e.g. maximum

number of iterations):
I Compute the gradient ∇wJ(w).
I Update the current estimate of the parameters in the direction

opposite of the gradient (in order to move towards the
minimum of the function): w← w − µ∇wJ(w)

Gradient descent

Figure source: deeplearningbook.org

Learning rate

The choice of the learning rate µ is crucial.

Stochastic gradient descent

Note that in order to compute ∇wJ(w), the output of the model
for all N training samples needs to be computed.

This is computationally challenging in case of large number of
training samples.

Solution: estimate ∇wJ(w) based on a smaller number of training
samples N ′ << N.

Stochastic gradient descent

The algorithm is called stochastic gradient descent (SGD).

Each iteration of the gradient descent algorithm, a random subset
of N ′ training samples is sampled from the entire training set.

N ′ is called the batch size.

Stochastic gradient descent with momentum

A common variant of SGD is SGD with momentum.

Intuition: add speed in the average direction. This variant often
converges a lot faster than regular SGD.

ν ← αν − µ∇wJ(w)

w← w + ν

Softmax regression

The extension of logistic regression to multi-class problem (more
than two classes) is straightforward and it is called softmax
regression.

Essentially, for C number of classes, C number of linear models are
and are converted to probabilities using the softmax function:

p(y = i |x) =
ex

ᵀwi∑C
k exᵀwk

The AND classification problem

The AND classification problem: logistic regression

The XOR classification problem

The XOR classification problem: logistic regression

The XOR classification problem: LR + polynomial
transformation

xi = [x1, x2]→ x̃i = [x1, x2, x
2
1 , x

2
2 , x1x2]

Feature transformation

Prior to 2010, most of the work on machine learning involved
relatively simple classifiers in combination with extensive,
“manual” feature engineering.

Figure source: Veta et al. SPIE MI 2012

A change of paradigm

Feed raw (or minimally processed) images directly to the machine
learning models. Design the models in such a way that they can
learn the needed feature transformations directly from the
image data.

The XOR classification problem

Question: How can the logistic regression classifier be modified to
solve the XOR problem without explicit feature transformation?

Combining two linear classifiers

Answer: Use two logistic regression classifiers.

A graphical view of linear and logistic regression

x1

x2

x1w1+x2w2w1

w2

y?

x1

x2

x1w1+x2w2w1

w2

p(y = 1 | x1)

?(x1w1+x2w2)

A graphical view of linear and logistic regression

x1

x2

x1w1+x2w2w1

w2

y?

x1

x2

x1w1+x2w2w1

w2

p(y = 1 | x1)

?(x1w1+x2w2)

Combining two linear classifiers

x1

x2

w5

x1w1+x2w2 h1 = sigm(x1w1+x2w2)

w6

x1w3+x2w4 h2 = sigm(x1w3+x2w4)

h1w5+h2w6

w1

w3

w2

w4

f(x,w)

sigm(h1w5+h2w6)

This is a (small) feedforward neural network.

It is a composition of two functions h(x) and f (x). h(x) is called a
hidden layer. It can be seen as a learned feature representation of
x (analogous to the hand-crafted features x̃).

Combining two linear classifiers

x1

x2

w5

x1w1+x2w2 h1 = sigm(x1w1+x2w2)

w6

x1w3+x2w4 h2 = sigm(x1w3+x2w4)

h1w5+h2w6

w1

w3

w2

w4

f(x,w)

sigm(h1w5+h2w6)

This is a (small) feedforward neural network.

It is a composition of two functions h(x) and f (x). h(x) is called a
hidden layer. It can be seen as a learned feature representation of
x (analogous to the hand-crafted features x̃).

Combining two linear classifiers

x1

x2

w5

x1w1+x2w2 h1 = sigm(x1w1+x2w2)

w6

x1w3+x2w4 h2 = sigm(x1w3+x2w4)

h1w5+h2w6

w1

w3

w2

w4

f(x,w)

sigm(h1w5+h2w6)

This is a (small) feedforward neural network.

It is a composition of two functions h(x) and f (x). h(x) is called a
hidden layer. It can be seen as a learned feature representation of
x (analogous to the hand-crafted features x̃).

Combining two linear classifiers

x1

x2

w5

w6

w1

w3

w2

w4

f(x,w)

h1 = sigm(x1w1+x2w2)

h2 = sigm(x1w3+x2w4)

sigm(h1w5+h2w6)

Often the sigmoid nonlinarity is not depicted in graphical
representations (but it is there, and as shown later, it is crucial).

A somewhat more difficult problem

A somewhat more difficult problem

Example in Tensorflow Playground.

http://bit.ly/393Wf4I

Why do we need nonlinearities

Question: What will happen if we omit the sigmoid nonlinearities
in the hidden layer?

x1

x2

w5

x1w1+x2w2 h1 = sigm(x1w1+x2w2)

w6

x1w3+x2w4 h2 = sigm(x1w3+x2w4)

h1w5+h2w6

w1

w3

w2

w4

f(x,w)

sigm(h1w5+h2w6)

Without the nonlinearities, the network will be a linear
combination of linear combinations of the input features, which
collapses to a linear combination of the input features.

In other words, it will be no different than just logistic regression.
The network has no depth.

Why do we need nonlinearities

Question: What will happen if we omit the sigmoid nonlinearities
in the hidden layer?

x1

x2

w5

x1w1+x2w2 h1 = sigm(x1w1+x2w2)

w6

x1w3+x2w4 h2 = sigm(x1w3+x2w4)

h1w5+h2w6

w1

w3

w2

w4

f(x,w)

sigm(h1w5+h2w6)

Without the nonlinearities, the network will be a linear
combination of linear combinations of the input features, which
collapses to a linear combination of the input features.

In other words, it will be no different than just logistic regression.
The network has no depth.

The ReLU nonlinearity

Instead of a sigmoid, the recommended default nonlinearity in
modern neural network is the rectified linear unit. Because rectified
linear units are nearly linear, they preserve many of the properties
that make linear models easy to optimise with gradient-based
methods.

Figure from: deeplearningbook.org

An even more difficult problem

Multilayer neural networks

x1

x2

f(x,w)

An even more difficult problem

Example in Tensorflow Playground.

http://bit.ly/2RQY9zC

The layered view of neural networks

f1(·,w1) f2(·,w2)x p(y|x)

The neural network can be seen as a composition of the different
layers: fd(. . . f2(f1(x))). In modern deep learning frameworks layers
(not neurons) are considered the basic building blocks.

The number of layers “d” is called the depth of the network. This
is where the “deep” on deep learning comes from.

The layered view of neural networks

f1(·,w1) f2(·,w2)x p(y|x)

The neural network can be seen as a composition of the different
layers: fd(. . . f2(f1(x))). In modern deep learning frameworks layers
(not neurons) are considered the basic building blocks.

The number of layers “d” is called the depth of the network. This
is where the “deep” on deep learning comes from.

The layered view of neural networks

f1(·,w1) f2(·,w2)x p(y|x)

yy J(w)

Layered view of a neural network at training time.

Summary

I The linear regression model can be extended to a logistic
regression model for classification by appending a sigmoid
nonlinearity (the model then is set to predicts the probability
of a class membership).

I Simple linear classifiers such as logistic regression can be
combined in neural networks that can solve more complex
problems.

I In modern deep learning frameworks layers (not In modern
deep learning frameworks layers (not neurons) are considered
the basic building blocks.

