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Learning goals

» Demonstrate how deep neural networks can be modified to be
more suitable for image data.

» |ntroduce the Keras neural networks API



Images as inputs to a neural network
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Images as inputs to a neural network
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Images as inputs to a neural network

3 hidden 1 output
5x5image neurons neurons

The biases w; ¢ that are not shown.



Images as inputs to a neural network
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The number of parameters explodes with larger image sizes
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The number of parameters explodes with larger image sizes
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# parameters = (height x width x # channels + 1) x #neurons

The “+1" comes from the biases w; g.



Towards convolutional neural networks

Example (1-D image for simplicity): 5 x 1 input image, 3 hidden
neurons.

full connectivity: 15
parameters



Towards convolutional neural networks

Example (1-D image for simplicity): 5 x 1 input image, 3 hidden
neurons.

full connectivity: 15  sparse connectivity:
parameters 9 parameters



Towards convolutional neural networks

Example (1-D image for simplicity): 5 x 1 input image, 3 hidden
neurons.

full connectivity: 15  sparse connectivity: shared weights: 3
parameters 9 parameters parameters

Note: the poor biases are again, ignored, but there are three of them in each case



Towards convolutional neural networks

Let the outputs of the three neurons be o(a1),0(a2),0(a3). Then:

ar = xywi + xXoWo + X3ws

ay = XoW1 + X3Wo + XaW3

asz = x3wy + XgWo + Xs w3




Towards convolutional neural networks

Let the outputs of the three neurons be o(a1),0(a2),0(a3). Then:

ar = xywi + xXoWo + X3ws

ay = XoW1 + X3Wo + XaW3

asz = x3wy + XgWo + Xs w3

[a1, @2, a3] = [x1, X2, X3, Xa, Xs5] * [w3, wo, wi]

, Where x is the convolution operator, thus a convolutional layer.



Motivation (or rather a justification)

sparse connectivity shared weights
motivation: the features motivation: the features
appear locally repeat throughout the image



Towards convolutional neural networks in 2D

5%5 image 3%3 hidden layer



Towards convolutional neural networks in 2D
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Towards convolutional neural networks in 2D
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Towards convolutional neural networks in 2D
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Towards convolutional neural networks in 2D
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Towards convolutional neural networks in 2D
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Adding a second feature map

5%5 image 3x3x2 hidden layer
(2 feature maps)



Adding a second feature map
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Adding a second feature map
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Convolution with padding
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Figure source: https://github.com/vdumoulin/conv_arithmetic



Computing the output size

S

input size — kernel size + 2 x padding 41

output size = -
P stride

In this example: input size = 5, kernel size = 3, padding = 1, stride = 1.
The output size is (5 —3+2x 1)/1+1=05.



Motivation (or rather justification) for CNNs

image.

The features of interest can appear at different locations in the

DA



Kernels and feature maps



Kernels and feature maps



Motivation (or rather a consequence) for deep CNNs

The network learns low-level features in the first layers, and builds
up towards more complex features in the deeper layers: intensity
— edges and colour blobs — junctions — shapes — etc.

Figure source: nvidia.com



Equivariance and invariance to translation

The convolutional layers are equivariant with translation: as the
input is translated, the output is translated in a predictable
manner.



Equivariance and invariance to translation

The convolutional layers are equivariant with translation: as the
input is translated, the output is translated in a predictable
manner.

A desired property of neural networks for classification is
invariance: as the input is translated, the output remains the
same.

Partial translational invariance of CNNs is achieved with the
max-pooling operator.

Note: there are other types of invariance e.g. rotational.



Max-pooling
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A max-pool with a 2 x 2 kernel stride and size 2 (most common
form) will reduce the image size by 2 in each dimension (a useful
side-effect).



A “typical” CNN architecture for 2D image classification

Note that the convolution is a linear operation so non-linearities
(such as ReLU) are still needed.



Training CNNs
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https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

What is Keras?

Keras is a high-level neural networks API, written in Python and
capable of running on top of TensorFlow, CNTK, or Theano.

Keras API

Tensorflow

GPU GPU




What is Keras?

Two APl implementations: keras.io (reference implementation)
and from Tensorflow.

import keras
import tensorflow as tf

layer = keras.layers.Dense # used in slides
layer = tf.keras.layers.Dense # used in the exercises



Implementing neural networks in Keras

The core data structure of Keras is a model, a way to organize
layers.

The simplest type of model is the Sequential model, a linear stack
of layers. Covers majority of use cases.

For more complex architectures, you should use the Keras
functional API, which allows to build arbitrary graphs of layers.
Covers almost all use cases.



Functional API

Most common use cases:
» Models with multiple input and/or multiple outputs
> Models with shared layers



Example implementation

# placeholder for RGB images
inputs = keras.Input(shape=[64, 64, 1])



Example implementation

convl = keras.layers.Conv2D(
filters = 16,
kernel_size = 3,
strides = (1, 1),
padding = "same" ,

activation = "relu")



Example implementation

maxPooll = keras.layers.MaxPool2D (
pool_size = (2, 2),
strides = (2,2),

padding = "valid")



Example implementation

conv2 = keras.layers.Conv2D(
filters = 32,
kernel_size = 3,
strides = (1, 1),
padding = "same" ,

activation = "relu")



Example implementation

maxPool2 = keras.layers.MaxPool2D (
pool_size = (2, 2),
strides = (2,2),

padding = "valid")



Example implementation

dense = keras.layers.Dense(
units = 100,
activation = "ReLU")



Example implementation

output = keras.layers.Dense(
units = 1,

activation = "sigmoid”)



Example implementation

Making the connection:

X maxPooll(convl(inputs))
X maxPool2(conv2(x))

x = flatten (x)
X

o

= dense(x)
utputs = output(x)



Training a model

model = keras.Model(inputs = inputs, outputs = outputs)
loss = keras.losses.categorical_crossentropy
optimizer = keras.optimizers.SGD(Ir=0.01, momentum=0.9)

model.compile(loss=loss , optimizer=optimizer)



Training a model

model = keras.Model(inputs = inputs, outputs = outputs)
loss = keras.losses.categorical_crossentropy
optimizer = keras.optimizers.SGD(Ir=0.01, momentum=0.9)

model.compile(loss=loss , optimizer=optimizer)

# x_train and y_train are Numpy arrays
model. fit (x_train, y_train, epochs=5, batch_size=32)



Training a model

Or, feed batches manually in a training loop:

for i in range(0, num_iterations):
x_batch , y_batch = some_batch_generator (i)
model . train_on_batch (x_batch, y_batch)



Model evaluation

loss_and_metrics = model.evaluate(x_test, y_test,
batch_size=128)

classes = model.predict(x_test, batch_size=128)



Summary

» Compared to fully connected neural networks, convolutional
neural networks have sparse connectivity and weight sharing,
which makes them suitable for image data.

» The Keras neural networks API allows for user-friendly
implementation and training of (convolutional) neural
networks.
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